S76-23275 (1976) --- Apollo-Soyuz Test Project artist?s concept by Paul Fjeld.
APOLLO-SOYUZ TEST PROJECT (ASTP) - ART CONCEPT (BY PAUL FJELD)
S76-22455 (1976) --- Apollo-Soyuz Test Project artist?s concept by Paul Fjeld.
APOLLO-SOYUZ TEST PROJECT (ASTP) - ARTIST CONCEPT
S75-28510 (July 1975) --- An artist?s concept depicting the Soviet ASTP Soyuz spacecraft in Earth orbit. The three major components of the Soyuz are the spherical-shaped Orbital Module on which the letters CCCP (USSR) are printed, the bell-shaped Descent Vehicle in the center, and the cylindrical-shaped Instrument Assembly Module from which two solar panels protrude.  The docking system on the Orbital Module was specially designed to interface with the docking system on the Apollo?s Docking Module. The painting is by artist Paul Fjeld.
ASTP - ARTIST CONCEPTS
During the Space Shuttle development phase, Marshall plarners concluded a Heavy Lift Launch Vehicle (HLLV) would be needed for successful Space Industrialization. Shown here in this 1976's artist's conception is an early version of the HLLV during launch.
Early Program Development
This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth, illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station featured a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.
Space Station
This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth; illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station features a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.
Space Station
S75-28511 (July 1975) --- An artist?s concept depicting the American and Soviet spacecraft docked in Earth orbit during the July 1975 Apollo-Soyuz Test Project mission. The Apollo Command/Service Module is on the left, the Docking Module is in the center, and the Soyuz spacecraft is on the right. The first docking of spacecraft from two different nations was scheduled for July 17, 1975. The American and Soviet ASTP crewmen planned to visit each other?s spacecraft while Apollo and Soyuz are docked for a maximum period of two days. The docking system on the Docking Module and the docking system on the Soyuz Orbital Module are designed to interface with each other. The painting is by artist Paul Fjeld.
APOLLO-SOYUZ TEST PROJECT (ASTP) - ARTIST CONCEPTS
S75-27287 (May 1975) --- An artist?s concept depicting an American Apollo spacecraft docked with a Soviet Soyuz spacecraft in Earth orbit. This view is looking toward the aft end of Soyuz, with the Apollo in the background. Two solar panels protrude out from the instrument assembly module of the Soyuz. The glow on Earth?s horizon is seen on the left. During the joint U.S.-USSR Apollo-Soyuz Test Project mission, scheduled for July 1975, the American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked for a maximum period of two days. This artwork is by Paul Fjeld.
ART CONCEPTS - ASTP
S70-31898 (March 1970) --- A North American Rockwell artist?s concept depicting the Apollo 13 Lunar Module (LM) descending to the Fra Mauro landing site as the Command and Service Module (CSM) remains in lunar orbit.  Astronaut Thomas K. Mattingly II, command module pilot, will photograph the LM?s descent from the CSM.  Astronauts James A. Lovell Jr., commander, and Fred W. Haise Jr., lunar module pilot, will descend in the LM to explore the moon.  Apollo 13 will be NASA?s third lunar landing mission.
APOLLO XIII - ART CONCEPTS
Originally investigated in the 1960's by Marshall Space Flight Center plarners as part of the Nuclear Energy for Rocket Vehicle Applications (NERVA) program, nuclear-thermal rocket propulsion has been more recently considered in spacecraft designs for interplanetary human exploration. This artist's concept illustrates a nuclear-thermal rocket with an aerobrake disk as it orbits Mars.
Research Technology
S68-51304 (December 1968) --- North American Rockwell artist's concept illustrating a phase of the scheduled Apollo 8 lunar orbit mission. Here, the Apollo 8 spacecraft Command and Service Modules (CSM), still attached to the Saturn V (S-IVB) third stage, heads for the moon at a speed of about 24,300 miles per hour. The trajectory, computed from the Saturn V's third stage instrumentation unit, provides a "free return" to Earth around the moon.
Art Concepts - Apollo VIII
S73-02395 (August 1973) --- An artist?s concept illustrating an Apollo-type spacecraft (on left) about to dock with a Soviet Soyuz-type spacecraft. A recent agreement between the United States and the Union of Soviet Socialist Republics provides for the docking in space of the Soyuz and Apollo-type spacecraft in Earth orbit in 1975.  The joint venture is called the Apollo-Soyuz Test Project.
Artist's concept of Apollo/Soyuz spacecraft docking approach
S75-27288 (April 1975) --- An artist?s concept illustrating the mission profile of the Apollo-Soyuz Test Project. The phases of the mission depicted include launch, rendezvous, docking, separation and splashdown. During the joint U.S.-USSR ASTP flight, scheduled for July 1975, the American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked for a maximum period of two days. The mission is designed to test equipment and techniques that will establish international crew rescue capability in space, as well as permit future cooperative scientific missions. This artwork is by Davis Meltzer.
ART CONCEPTS - APOLLO-SOYUZ TEST PROJECT (ASTP)
S75-27290 (April 1975) --- An artist?s concept illustrating a cutaway view of the docked Apollo and Soyuz spacecraft in Earth orbit.  This scene depicts the moment the two international crews meet in space for the first time. Two of the three American crewmen are in the Docking Module. The two Soviet crewmen are in the Soyuz spacecraft?s Orbital Module. The two crew commanders are shaking hands through the hatchway. The third American crewman is in the Apollo Command Module. During the joint U.S.-USSR Apollo-Soyuz Test Project mission, which is scheduled for July 1975, the American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked for a maximum period of two days. The mission is designed to test equipment and techniques that will establish international crew rescue capability in space, as well as permit future cooperative scientific missions. The artwork is by Davis Meltzer.
ART CONCEPTS - APOLLO-SOYUZ TEST PROJECT (ASTP)
This artist's concept depicts the third observatory, the High Energy Astronomy Observatory (HEAO)-3 in orbit. Designed and developed by TRW, Inc. under the direction of the Marshall Space Flight Center, the HEAO-3's mission was to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit.
High Energy Astronomy Observatory (HEAO)
S69-39011 (July 1969) --- TRW Incorporated's artist concept depicting the Apollo 11 Lunar Module (LM) descending to the surface of the moon. Inside the LM will be astronauts Neil A. Armstrong, commander, and Edwin E. Aldrin Jr., lunar module pilot. Astronaut Michael Collins, command module pilot, will remain with the Command and Service Modules (CSM) in lunar orbit. TRW's LM descent engine will brake Apollo 11's descent to the lunar surface.  The throttle-able rocket engine will be fired continuously the last 10 miles of the journey to the moon, slowing the LM to a speed of two miles per hour at touchdown. TRW Incorporated designed and built the unique engine at Redondo Beach, California under subcontract to the Grumman Aircraft Engineering Corporation, Bethpage, New York, the LM prime contractor.
ARTIST CONCEPT - APOLLO XI - LUNAR SURFACE
This artist's concept depicts the separation of the Skylab payload shroud. The payload shroud was both an environmental shield and an aerodynamic fairing. Attached to the forward end of the fixed airlock shroud, it protected the airlock, the docking adapter, and the solar observatory before and during launch. It also provided structural support for the solar observatory in the launch configuration. The payload shroud was jettisoned once Skylab reached orbit after separation of the S-II second stage of the Saturn V vehicle. Five major assemblies clustered together made up the orbiting space station called Skylab. The largest of these was the orbital workshop, that housed the crew quarters and a major experiment area. The airlock module, attached to the forward end of the workshop, enabled crewmembers to make excursions outside Skylab. The docking adapter, attached to the forward end of the airlock module, provided the docking port for the Apollo command and service module. The Apollo Telescope Mount was the first marned astronomical observatory designed for solar research from Earth orbit.
Skylab
S75-28512 (July 1975) --- An artist?s concept depicting a scene in Earth orbit during the Apollo transposition and docking maneuvers of the Apollo-Soyuz Test Project mission. The Command/Service Module is moving into position to dock with the Docking Module. Following the docking the DM will be extracted from the expended Saturn IVB stage. The Docking Module is designed to link the American Apollo spacecraft with the Soviet Soyuz spacecraft.  This scene will take place some one hour and twenty-three minutes after the Apollo-Saturn 1B liftoff from the Kennedy Space Center on July 15, 1975. The Soyuz launch at 7:20 a.m. (CDT) from the Baikonur, Kazakhstan launch pad will precede the Apollo liftoff by seven and one-half hours. The artwork is by Paul Fjeld.
APOLLO-SOYUZ TEST PROJECT (ASTP) - ARTIST CONCEPTS
      When NASA's Voyager 2 spacecraft flew by Uranus in 1986, it provided scientists' first – and, so far, only – close glimpse of this outer planet. Scientists were confronted by a mystery: The energized particles around the planet defied their understanding of how magnetic fields work to trap particle radiation.      The first panel of this artist's concept depicts how Uranus's magnetosphere (its protective bubble) was behaving before Voyager 2's flyby. The second panel shows that an unusual kind of solar weather was happening at the same time as the spacecraft's flyby, giving scientists a skewed view of Uranus's magnetosphere.      The work, led by a scientist at NASA's Jet Propulsion Laboratory and described in a paper published in Nature Astronomy in November 2024, contributes to scientists' understanding of this enigmatic planet. It also opens the door to the possibility that Uranus' five major moons may be active.  https://photojournal.jpl.nasa.gov/catalog/PIA26069
Uranus Magnetosphere Mystery Unlocked (Artist's Concept)
S75-27289 (May 1975) --- An artist?s concept depicting the American Apollo spacecraft docked with a Soviet Soyuz spacecraft in Earth orbit. During the joint U.S.-USSR Apollo-Soyuz Test Project mission, scheduled for July 1975, the American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked for a maximum period of two days. The mission is designed to test equipment and techniques that will establish international crew rescue capability in space, as well as permit future cooperative scientific missions. Each nation has developed separately docking systems based on a mutually agreeable single set of interface design specifications. The major new U.S. program elements are the docking module and docking system necessary to achieve compatibility of rendezvous and docking systems with the USSR-developed hardware to be used on the Soyuz spacecraft. The DM and docking system together with an Apollo Command/Service Module will be launched by a Saturn 1B launch vehicle. This artwork is by Paul Fjeld.
ART CONCEPTS - ASTP
This artist's concept depicts the Apollo-Soyuz Test Project (ASTP), the first international docking of the U.S.'s Apollo spacecraft and the U.S.S.R.'s Soyuz spacecraft in space. The objective of the ASTP mission was to provide the basis for a standardized international system for docking of marned spacecraft. The Soyuz spacecraft, with Cosmonauts Alexei Leonov and Valeri Kubasov aboard, was launched from the Baikonur Cosmodrome near Tyuratam in the Kazakh, Soviet Socialist Republic, at 8:20 a.m. (EDT) on July 15, 1975. The Apollo spacecraft, with Astronauts Thomas Stafford, Vance Brand, and Donald Slayton aboard, was launched from Launch Complex 39B, Kennedy Space Center, Florida, at 3:50 p.m. (EDT) on July 15, 1975. The Primary objectives of the ASTP were achieved. They performed spacecraft rendezvous, docking and undocking, conducted intervehicular crew transfer, and demonstrated the interaction of U.S. and U.S.S.R. control centers and spacecraft crews. The mission marked the last use of a Saturn launch vehicle. The Marshall Space Flight Center was responsible for development and sustaining engineering of the Saturn IB launch vehicle during the mission.
Saturn Apollo Program
This artist's concept depicts the Apollo-Soyuz Test Project (ASTP) with insets of photographs of three U.S. astronauts (Thomas Stafford, Vance Brand, and Donald Slayton) and two U.S.S.R. cosmonauts (Alexei Leonov and Valeri Kubasov). The objective of the ASTP mission was to accomplish the first docking of a standardized international system, the U.S.'s Apollo spacecraft and the U.S.S.R.'s Soyuz spacecraft, in space. The Soyuz spacecraft was launched from the Baikonur Cosmodrome near Tyuratam in the Kazakh, Soviet Socialist Republic, at 8:20 a.m. (EDT) on July 15, 1975. The Apollo spacecraft was launched from Launch Complex 39B, Kennedy Space Center, Florida, at 3:50 p.m. (EDT) on July 15, 1975. The Primary objectives of the ASTP were achieved. They performed spacecraft rendezvous, docking and undocking, conducted intervehicular crew transfer, and demonstrated the interaction of U.S. and U.S.S.R. control centers and spacecraft crews. The mission marked the last use of a Saturn launch vehicle. The Marshall Space Flight Center was responsible for development and sustaining engineering of the Saturn IB launch vehicle during the mission.
Saturn Apollo Program
S75-20361 (27 Feb. 1975) --- This is the American crew insignia of the joint United States-USSR Apollo-Soyuz Test Project (ASTP) scheduled to take place in July 1975.  Of circular design, the insignia has a colorful border area, outlined in red, with the names of the five crew members and the words Apollo in English and Soyuz in Russian around an artist?s concept of the Apollo and Soyuz spacecraft about to dock in Earth orbit. The bright sun and the blue and white Earth are in the background. The white stars on the blue background represent American astronauts Thomas P. Stafford, commander; Vance D. Brand, command module pilot; and Donald (Deke) K. Slayton, docking module pilot. The dark gold stars on the red background represent Soviet cosmonauts Aleksey A. Leonov, commander, and Valeriy N. Kubasov, engineer. Soyuz and Apollo will be launched separately from the USSR and United States, and will dock and remain together for as long as two days. The three Apollo astronauts will enter Soyuz and the two Soviet cosmonauts will visit the Apollo spacecraft via a docking module.  The Russian word ?soyuz? means ?union? in English.
ASTP - INSIGNIAS
S71-39481 (July 1971) --- An artist's concept showing TRW's small lunar subsatellite being ejected into lunar orbit from the SIM bay of the Apollo 15 Service Module. The 80-pound satellite will remain in orbit a year or more, carrying scientific experiments to study space in the vicinity of the moon. The satellite carries three experiments: S-Band Transponder; Particle Shadows/Boundary Layer Experiment; and Subsatellite Magnetometer Experiment. The subsatellite is housed in a container resembling a rural mailbox, and when deployed is spring-ejected out-of-plane at 4 fps with a spin rate of 140 rpm. After the satellite booms are deployed, the spin rate is stabilized at about 12 rpm. The subsatellite is 31 inches long and has a 14 inch hexagonal diameter. The exact weight is 78.5 pounds. The folded booms deploy to a length of five feet. Subsatellite electrical power is supplied by a solar cell array outputting 25 watts for dayside operation and a rechargeable silver-cadmium battery for nightside passes.
ARTIST CONCEPT - SUBSATELLITE EJECTION (APOLLO XV) - MSC
CAPE CANAVERAL, Fla. -- This is an artist's conception of an Almaz capsule, the basis of Excalibur Almaz Inc.'s Human Spacecraft design. In 2011, NASA's Commercial Crew Program CCP and the Houston-based company entered into an unfunded Space Act Agreement during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems ATK, Blue Origin, The Boeing Co., Sierra Nevada Corp., Space Exploration Technologies SpaceX, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Excalibur Almaz Limited
KSC-2012-1016
S72-53472 (November 1972) --- An artist's concept illustrating how radar beams of the Apollo 17 lunar sounder experiment will probe three-quarters of a mile below the moon's surface from the orbiting spacecraft. The Lunar Sounder will be mounted in the SIM bay of the Apollo 17 Service Module. Electronic data recorded on film will be retrieved by the crew during trans-Earth EVA. Geologic information on the lunar interior obtained by the sounder will permit scientific investigation of underground rock layers, lava flow patterns, rille (canyon) structures, mascon properties, and any areas containing water. A prototype lunar sounder has been flight tested in aircraft over selected Earth sites to confirm the equipment design and develop scientific analysis techniques. The Lunar Sounder Experiment (S-209) was developed by North American Rockwell's (NR) Space Division for NASA's Manned Spacecraft Center to provide data for a scientific investigation team with representatives from the Jet Propulsion Laboratory, University of Utah, University of Michigan, U.S. Geological Survey, and NASA Ames Research Center.
EXPERIMENTS - APOLLO 17
Artist Concepts, Apollo Mission:        S66-10983: Ascent Stage Liftoff (S66-05094)   S66-10984: Orientation During Ascent Phase (S66-05098)   S66-10985: Midcourse Coast (S66-05113)   S66-10986: Survey of Landing Site (S66-05117)   S66-10987: Lunar Module (LM) Jettison (S66-05089)   S66-10988: Trans-Earth Injection (S66-05090)    S66-10989: Exploration on Lunar Surface Apollo Surface Lunar Exploration Experiment (ASLEP)   S66-10990: Liftoff (S66-05125)   S66-10991: Command Module (CM)-Service Module (SM) Separation (S66-05101 N/F)   S66-10992: Touchdown on Lunar Surface (S66-05115)   S66-10993: Transfer Orbit Insertion (S66-05111)   S66-10994: Drogue Parachute Deployment    S66-10995: S-IC Stage Separation S-II Stage Thrusting (S66-05099)   S66-10996: Jettison Launch Escape System (S66-05114)   S66-10997: Main Parachute Deployment (S66-05091)   S66-10998: Mid-course correction (S66-05088)   S66-10999: Lunar Orbit Insertion (S66-05086)   S66-11000: Command Service Module (CSM)-LM Docked in LM Adapter-S-IVB (S66-06526)   S66-11001: Docking and Separation of spacecraft from S-IVB (S66-05107)   S66-11002: Final Descent (S66-05096)   S66-11003: Entry into Earth Atmosphere (S66-05096)   S66-11004: Deploy S/C LM Adapter-Separate CSM from LM-S-IVB (S66-06525 & 05105)   S66-11005: Turnaround of CSM (S66-05104)   S66-11006: S-II Stage Separation S-IVB Stage Thrusting (S66-05102)   S66-11007: LM Ascent CSM Docked (S66-05100)   S66-11008: Midcourse Correction SPS Mode (S66-05106)   S66-11009: Earth Orbit Insertion of S-IVB & S/C (S66-05092)   S66-11010: Trans-lunar Injection (S66-05116)   S66-11011: LM Descent (S66-05110)   S66-11012: S-IVB Stage Operations (S66-05112 N/F)   S66-11013: Spacecraft Recovery (S66-05126)   S66-11014: Lunar Orbit (S66-05103)   S66-11015: CSM-LM Docking (S66-05095)   S66-11016: Entry CM (S66-5109)   S66-11017: Midcourse Corrections to Lunar Landing (S66-08486)   S66-11018: Midcourse Corrections to Lunar Landing w/Overlay (S66-05083)   S66-11019: Earth Launch Phase w/Overlay (S66-08485 & 05119)   S66-11020: Earth Launch Phase (S66-08487 & S66-05084)   S66-11022: Apollo Vehicles (S66-05127)   S66-11024: Transfer to LM (S66-05082)   S66-11025: Lunar Launch Phase   S66-11027: Trans-earth Separation of C/M from S/M-C/M return to Earth (S66-05097)   S66-11028: CSM-LM Separation, LM Descent to Moon (S66-05108)               MSC, Houston, TX         Also available in B&W      12/1965 - 06/1966
Artist Concepts - Apollo - MSC
Artist Concepts, Apollo Mission:        S66-10983: Ascent Stage Liftoff (S66-05094)   S66-10984: Orientation During Ascent Phase (S66-05098)   S66-10985: Midcourse Coast (S66-05113)   S66-10986: Survey of Landing Site (S66-05117)   S66-10987: Lunar Module (LM) Jettison (S66-05089)   S66-10988: Trans-Earth Injection (S66-05090)    S66-10989: Exploration on Lunar Surface Apollo Surface Lunar Exploration Experiment (ASLEP)   S66-10990: Liftoff (S66-05125)   S66-10991: Command Module (CM)-Service Module (SM) Separation (S66-05101 N/F)   S66-10992: Touchdown on Lunar Surface (S66-05115)   S66-10993: Transfer Orbit Insertion (S66-05111)   S66-10994: Drogue Parachute Deployment    S66-10995: S-IC Stage Separation S-II Stage Thrusting (S66-05099)   S66-10996: Jettison Launch Escape System (S66-05114)   S66-10997: Main Parachute Deployment (S66-05091)   S66-10998: Mid-course correction (S66-05088)   S66-10999: Lunar Orbit Insertion (S66-05086)   S66-11000: Command Service Module (CSM)-LM Docked in LM Adapter-S-IVB (S66-06526)   S66-11001: Docking and Separation of spacecraft from S-IVB (S66-05107)   S66-11002: Final Descent (S66-05096)   S66-11003: Entry into Earth Atmosphere (S66-05096)   S66-11004: Deploy S/C LM Adapter-Separate CSM from LM-S-IVB (S66-06525 & 05105)   S66-11005: Turnaround of CSM (S66-05104)   S66-11006: S-II Stage Separation S-IVB Stage Thrusting (S66-05102)   S66-11007: LM Ascent CSM Docked (S66-05100)   S66-11008: Midcourse Correction SPS Mode (S66-05106)   S66-11009: Earth Orbit Insertion of S-IVB & S/C (S66-05092)   S66-11010: Trans-lunar Injection (S66-05116)   S66-11011: LM Descent (S66-05110)   S66-11012: S-IVB Stage Operations (S66-05112 N/F)   S66-11013: Spacecraft Recovery (S66-05126)   S66-11014: Lunar Orbit (S66-05103)   S66-11015: CSM-LM Docking (S66-05095)   S66-11016: Entry CM (S66-5109)   S66-11017: Midcourse Corrections to Lunar Landing (S66-08486)   S66-11018: Midcourse Corrections to Lunar Landing w/Overlay (S66-05083)   S66-11019: Earth Launch Phase w/Overlay (S66-08485 & 05119)   S66-11020: Earth Launch Phase (S66-08487 & S66-05084)   S66-11022: Apollo Vehicles (S66-05127)   S66-11024: Transfer to LM (S66-05082)   S66-11025: Lunar Launch Phase   S66-11027: Trans-earth Separation of C/M from S/M-C/M return to Earth (S66-05097)   S66-11028: CSM-LM Separation, LM Descent to Moon (S66-05108)               MSC, Houston, TX         Also available in B&W      12/1965 - 06/1966
Artist Concepts - Apollo - MSC
Artist Concepts, Apollo Mission:        S66-10983: Ascent Stage Liftoff (S66-05094)   S66-10984: Orientation During Ascent Phase (S66-05098)   S66-10985: Midcourse Coast (S66-05113)   S66-10986: Survey of Landing Site (S66-05117)   S66-10987: Lunar Module (LM) Jettison (S66-05089)   S66-10988: Trans-Earth Injection (S66-05090)    S66-10989: Exploration on Lunar Surface Apollo Surface Lunar Exploration Experiment (ASLEP)   S66-10990: Liftoff (S66-05125)   S66-10991: Command Module (CM)-Service Module (SM) Separation (S66-05101 N/F)   S66-10992: Touchdown on Lunar Surface (S66-05115)   S66-10993: Transfer Orbit Insertion (S66-05111)   S66-10994: Drogue Parachute Deployment    S66-10995: S-IC Stage Separation S-II Stage Thrusting (S66-05099)   S66-10996: Jettison Launch Escape System (S66-05114)   S66-10997: Main Parachute Deployment (S66-05091)   S66-10998: Mid-course correction (S66-05088)   S66-10999: Lunar Orbit Insertion (S66-05086)   S66-11000: Command Service Module (CSM)-LM Docked in LM Adapter-S-IVB (S66-06526)   S66-11001: Docking and Separation of spacecraft from S-IVB (S66-05107)   S66-11002: Final Descent (S66-05096)   S66-11003: Entry into Earth Atmosphere (S66-05096)   S66-11004: Deploy S/C LM Adapter-Separate CSM from LM-S-IVB (S66-06525 & 05105)   S66-11005: Turnaround of CSM (S66-05104)   S66-11006: S-II Stage Separation S-IVB Stage Thrusting (S66-05102)   S66-11007: LM Ascent CSM Docked (S66-05100)   S66-11008: Midcourse Correction SPS Mode (S66-05106)   S66-11009: Earth Orbit Insertion of S-IVB & S/C (S66-05092)   S66-11010: Trans-lunar Injection (S66-05116)   S66-11011: LM Descent (S66-05110)   S66-11012: S-IVB Stage Operations (S66-05112 N/F)   S66-11013: Spacecraft Recovery (S66-05126)   S66-11014: Lunar Orbit (S66-05103)   S66-11015: CSM-LM Docking (S66-05095)   S66-11016: Entry CM (S66-5109)   S66-11017: Midcourse Corrections to Lunar Landing (S66-08486)   S66-11018: Midcourse Corrections to Lunar Landing w/Overlay (S66-05083)   S66-11019: Earth Launch Phase w/Overlay (S66-08485 & 05119)   S66-11020: Earth Launch Phase (S66-08487 & S66-05084)   S66-11022: Apollo Vehicles (S66-05127)   S66-11024: Transfer to LM (S66-05082)   S66-11025: Lunar Launch Phase   S66-11027: Trans-earth Separation of C/M from S/M-C/M return to Earth (S66-05097)   S66-11028: CSM-LM Separation, LM Descent to Moon (S66-05108)               MSC, Houston, TX         Also available in B&W      12/1965 - 06/1966
Artist Concepts - Apollo - MSC
Artist Concepts, Apollo Mission:        S66-10983: Ascent Stage Liftoff (S66-05094)   S66-10984: Orientation During Ascent Phase (S66-05098)   S66-10985: Midcourse Coast (S66-05113)   S66-10986: Survey of Landing Site (S66-05117)   S66-10987: Lunar Module (LM) Jettison (S66-05089)   S66-10988: Trans-Earth Injection (S66-05090)    S66-10989: Exploration on Lunar Surface Apollo Surface Lunar Exploration Experiment (ASLEP)   S66-10990: Liftoff (S66-05125)   S66-10991: Command Module (CM)-Service Module (SM) Separation (S66-05101 N/F)   S66-10992: Touchdown on Lunar Surface (S66-05115)   S66-10993: Transfer Orbit Insertion (S66-05111)   S66-10994: Drogue Parachute Deployment    S66-10995: S-IC Stage Separation S-II Stage Thrusting (S66-05099)   S66-10996: Jettison Launch Escape System (S66-05114)   S66-10997: Main Parachute Deployment (S66-05091)   S66-10998: Mid-course correction (S66-05088)   S66-10999: Lunar Orbit Insertion (S66-05086)   S66-11000: Command Service Module (CSM)-LM Docked in LM Adapter-S-IVB (S66-06526)   S66-11001: Docking and Separation of spacecraft from S-IVB (S66-05107)   S66-11002: Final Descent (S66-05096)   S66-11003: Entry into Earth Atmosphere (S66-05096)   S66-11004: Deploy S/C LM Adapter-Separate CSM from LM-S-IVB (S66-06525 & 05105)   S66-11005: Turnaround of CSM (S66-05104)   S66-11006: S-II Stage Separation S-IVB Stage Thrusting (S66-05102)   S66-11007: LM Ascent CSM Docked (S66-05100)   S66-11008: Midcourse Correction SPS Mode (S66-05106)   S66-11009: Earth Orbit Insertion of S-IVB & S/C (S66-05092)   S66-11010: Trans-lunar Injection (S66-05116)   S66-11011: LM Descent (S66-05110)   S66-11012: S-IVB Stage Operations (S66-05112 N/F)   S66-11013: Spacecraft Recovery (S66-05126)   S66-11014: Lunar Orbit (S66-05103)   S66-11015: CSM-LM Docking (S66-05095)   S66-11016: Entry CM (S66-5109)   S66-11017: Midcourse Corrections to Lunar Landing (S66-08486)   S66-11018: Midcourse Corrections to Lunar Landing w/Overlay (S66-05083)   S66-11019: Earth Launch Phase w/Overlay (S66-08485 & 05119)   S66-11020: Earth Launch Phase (S66-08487 & S66-05084)   S66-11022: Apollo Vehicles (S66-05127)   S66-11024: Transfer to LM (S66-05082)   S66-11025: Lunar Launch Phase   S66-11027: Trans-earth Separation of C/M from S/M-C/M return to Earth (S66-05097)   S66-11028: CSM-LM Separation, LM Descent to Moon (S66-05108)               MSC, Houston, TX         Also available in B&W      12/1965 - 06/1966
Artist Concepts - Apollo - MSC
Artist Concepts, Apollo Mission:        S66-10983: Ascent Stage Liftoff (S66-05094)   S66-10984: Orientation During Ascent Phase (S66-05098)   S66-10985: Midcourse Coast (S66-05113)   S66-10986: Survey of Landing Site (S66-05117)   S66-10987: Lunar Module (LM) Jettison (S66-05089)   S66-10988: Trans-Earth Injection (S66-05090)    S66-10989: Exploration on Lunar Surface Apollo Surface Lunar Exploration Experiment (ASLEP)   S66-10990: Liftoff (S66-05125)   S66-10991: Command Module (CM)-Service Module (SM) Separation (S66-05101 N/F)   S66-10992: Touchdown on Lunar Surface (S66-05115)   S66-10993: Transfer Orbit Insertion (S66-05111)   S66-10994: Drogue Parachute Deployment    S66-10995: S-IC Stage Separation S-II Stage Thrusting (S66-05099)   S66-10996: Jettison Launch Escape System (S66-05114)   S66-10997: Main Parachute Deployment (S66-05091)   S66-10998: Mid-course correction (S66-05088)   S66-10999: Lunar Orbit Insertion (S66-05086)   S66-11000: Command Service Module (CSM)-LM Docked in LM Adapter-S-IVB (S66-06526)   S66-11001: Docking and Separation of spacecraft from S-IVB (S66-05107)   S66-11002: Final Descent (S66-05096)   S66-11003: Entry into Earth Atmosphere (S66-05096)   S66-11004: Deploy S/C LM Adapter-Separate CSM from LM-S-IVB (S66-06525 & 05105)   S66-11005: Turnaround of CSM (S66-05104)   S66-11006: S-II Stage Separation S-IVB Stage Thrusting (S66-05102)   S66-11007: LM Ascent CSM Docked (S66-05100)   S66-11008: Midcourse Correction SPS Mode (S66-05106)   S66-11009: Earth Orbit Insertion of S-IVB & S/C (S66-05092)   S66-11010: Trans-lunar Injection (S66-05116)   S66-11011: LM Descent (S66-05110)   S66-11012: S-IVB Stage Operations (S66-05112 N/F)   S66-11013: Spacecraft Recovery (S66-05126)   S66-11014: Lunar Orbit (S66-05103)   S66-11015: CSM-LM Docking (S66-05095)   S66-11016: Entry CM (S66-5109)   S66-11017: Midcourse Corrections to Lunar Landing (S66-08486)   S66-11018: Midcourse Corrections to Lunar Landing w/Overlay (S66-05083)   S66-11019: Earth Launch Phase w/Overlay (S66-08485 & 05119)   S66-11020: Earth Launch Phase (S66-08487 & S66-05084)   S66-11022: Apollo Vehicles (S66-05127)   S66-11024: Transfer to LM (S66-05082)   S66-11025: Lunar Launch Phase   S66-11027: Trans-earth Separation of C/M from S/M-C/M return to Earth (S66-05097)   S66-11028: CSM-LM Separation, LM Descent to Moon (S66-05108)               MSC, Houston, TX         Also available in B&W      12/1965 - 06/1966
Artist Concepts - Apollo - MSC
Artist Concepts, Apollo Mission:        S66-10983: Ascent Stage Liftoff (S66-05094)   S66-10984: Orientation During Ascent Phase (S66-05098)   S66-10985: Midcourse Coast (S66-05113)   S66-10986: Survey of Landing Site (S66-05117)   S66-10987: Lunar Module (LM) Jettison (S66-05089)   S66-10988: Trans-Earth Injection (S66-05090)    S66-10989: Exploration on Lunar Surface Apollo Surface Lunar Exploration Experiment (ASLEP)   S66-10990: Liftoff (S66-05125)   S66-10991: Command Module (CM)-Service Module (SM) Separation (S66-05101 N/F)   S66-10992: Touchdown on Lunar Surface (S66-05115)   S66-10993: Transfer Orbit Insertion (S66-05111)   S66-10994: Drogue Parachute Deployment    S66-10995: S-IC Stage Separation S-II Stage Thrusting (S66-05099)   S66-10996: Jettison Launch Escape System (S66-05114)   S66-10997: Main Parachute Deployment (S66-05091)   S66-10998: Mid-course correction (S66-05088)   S66-10999: Lunar Orbit Insertion (S66-05086)   S66-11000: Command Service Module (CSM)-LM Docked in LM Adapter-S-IVB (S66-06526)   S66-11001: Docking and Separation of spacecraft from S-IVB (S66-05107)   S66-11002: Final Descent (S66-05096)   S66-11003: Entry into Earth Atmosphere (S66-05096)   S66-11004: Deploy S/C LM Adapter-Separate CSM from LM-S-IVB (S66-06525 & 05105)   S66-11005: Turnaround of CSM (S66-05104)   S66-11006: S-II Stage Separation S-IVB Stage Thrusting (S66-05102)   S66-11007: LM Ascent CSM Docked (S66-05100)   S66-11008: Midcourse Correction SPS Mode (S66-05106)   S66-11009: Earth Orbit Insertion of S-IVB & S/C (S66-05092)   S66-11010: Trans-lunar Injection (S66-05116)   S66-11011: LM Descent (S66-05110)   S66-11012: S-IVB Stage Operations (S66-05112 N/F)   S66-11013: Spacecraft Recovery (S66-05126)   S66-11014: Lunar Orbit (S66-05103)   S66-11015: CSM-LM Docking (S66-05095)   S66-11016: Entry CM (S66-5109)   S66-11017: Midcourse Corrections to Lunar Landing (S66-08486)   S66-11018: Midcourse Corrections to Lunar Landing w/Overlay (S66-05083)   S66-11019: Earth Launch Phase w/Overlay (S66-08485 & 05119)   S66-11020: Earth Launch Phase (S66-08487 & S66-05084)   S66-11022: Apollo Vehicles (S66-05127)   S66-11024: Transfer to LM (S66-05082)   S66-11025: Lunar Launch Phase   S66-11027: Trans-earth Separation of C/M from S/M-C/M return to Earth (S66-05097)   S66-11028: CSM-LM Separation, LM Descent to Moon (S66-05108)               MSC, Houston, TX         Also available in B&W      12/1965 - 06/1966
Artist Concepts - Apollo - MSC
Artist Concepts, Apollo Mission:        S66-10983: Ascent Stage Liftoff (S66-05094)   S66-10984: Orientation During Ascent Phase (S66-05098)   S66-10985: Midcourse Coast (S66-05113)   S66-10986: Survey of Landing Site (S66-05117)   S66-10987: Lunar Module (LM) Jettison (S66-05089)   S66-10988: Trans-Earth Injection (S66-05090)    S66-10989: Exploration on Lunar Surface Apollo Surface Lunar Exploration Experiment (ASLEP)   S66-10990: Liftoff (S66-05125)   S66-10991: Command Module (CM)-Service Module (SM) Separation (S66-05101 N/F)   S66-10992: Touchdown on Lunar Surface (S66-05115)   S66-10993: Transfer Orbit Insertion (S66-05111)   S66-10994: Drogue Parachute Deployment    S66-10995: S-IC Stage Separation S-II Stage Thrusting (S66-05099)   S66-10996: Jettison Launch Escape System (S66-05114)   S66-10997: Main Parachute Deployment (S66-05091)   S66-10998: Mid-course correction (S66-05088)   S66-10999: Lunar Orbit Insertion (S66-05086)   S66-11000: Command Service Module (CSM)-LM Docked in LM Adapter-S-IVB (S66-06526)   S66-11001: Docking and Separation of spacecraft from S-IVB (S66-05107)   S66-11002: Final Descent (S66-05096)   S66-11003: Entry into Earth Atmosphere (S66-05096)   S66-11004: Deploy S/C LM Adapter-Separate CSM from LM-S-IVB (S66-06525 & 05105)   S66-11005: Turnaround of CSM (S66-05104)   S66-11006: S-II Stage Separation S-IVB Stage Thrusting (S66-05102)   S66-11007: LM Ascent CSM Docked (S66-05100)   S66-11008: Midcourse Correction SPS Mode (S66-05106)   S66-11009: Earth Orbit Insertion of S-IVB & S/C (S66-05092)   S66-11010: Trans-lunar Injection (S66-05116)   S66-11011: LM Descent (S66-05110)   S66-11012: S-IVB Stage Operations (S66-05112 N/F)   S66-11013: Spacecraft Recovery (S66-05126)   S66-11014: Lunar Orbit (S66-05103)   S66-11015: CSM-LM Docking (S66-05095)   S66-11016: Entry CM (S66-5109)   S66-11017: Midcourse Corrections to Lunar Landing (S66-08486)   S66-11018: Midcourse Corrections to Lunar Landing w/Overlay (S66-05083)   S66-11019: Earth Launch Phase w/Overlay (S66-08485 & 05119)   S66-11020: Earth Launch Phase (S66-08487 & S66-05084)   S66-11022: Apollo Vehicles (S66-05127)   S66-11024: Transfer to LM (S66-05082)   S66-11025: Lunar Launch Phase   S66-11027: Trans-earth Separation of C/M from S/M-C/M return to Earth (S66-05097)   S66-11028: CSM-LM Separation, LM Descent to Moon (S66-05108)               MSC, Houston, TX         Also available in B&W      12/1965 - 06/1966
Artist Concepts - Apollo - MSC
Artist Concepts, Apollo Mission:        S66-10983: Ascent Stage Liftoff (S66-05094)   S66-10984: Orientation During Ascent Phase (S66-05098)   S66-10985: Midcourse Coast (S66-05113)   S66-10986: Survey of Landing Site (S66-05117)   S66-10987: Lunar Module (LM) Jettison (S66-05089)   S66-10988: Trans-Earth Injection (S66-05090)    S66-10989: Exploration on Lunar Surface Apollo Surface Lunar Exploration Experiment (ASLEP)   S66-10990: Liftoff (S66-05125)   S66-10991: Command Module (CM)-Service Module (SM) Separation (S66-05101 N/F)   S66-10992: Touchdown on Lunar Surface (S66-05115)   S66-10993: Transfer Orbit Insertion (S66-05111)   S66-10994: Drogue Parachute Deployment    S66-10995: S-IC Stage Separation S-II Stage Thrusting (S66-05099)   S66-10996: Jettison Launch Escape System (S66-05114)   S66-10997: Main Parachute Deployment (S66-05091)   S66-10998: Mid-course correction (S66-05088)   S66-10999: Lunar Orbit Insertion (S66-05086)   S66-11000: Command Service Module (CSM)-LM Docked in LM Adapter-S-IVB (S66-06526)   S66-11001: Docking and Separation of spacecraft from S-IVB (S66-05107)   S66-11002: Final Descent (S66-05096)   S66-11003: Entry into Earth Atmosphere (S66-05096)   S66-11004: Deploy S/C LM Adapter-Separate CSM from LM-S-IVB (S66-06525 & 05105)   S66-11005: Turnaround of CSM (S66-05104)   S66-11006: S-II Stage Separation S-IVB Stage Thrusting (S66-05102)   S66-11007: LM Ascent CSM Docked (S66-05100)   S66-11008: Midcourse Correction SPS Mode (S66-05106)   S66-11009: Earth Orbit Insertion of S-IVB & S/C (S66-05092)   S66-11010: Trans-lunar Injection (S66-05116)   S66-11011: LM Descent (S66-05110)   S66-11012: S-IVB Stage Operations (S66-05112 N/F)   S66-11013: Spacecraft Recovery (S66-05126)   S66-11014: Lunar Orbit (S66-05103)   S66-11015: CSM-LM Docking (S66-05095)   S66-11016: Entry CM (S66-5109)   S66-11017: Midcourse Corrections to Lunar Landing (S66-08486)   S66-11018: Midcourse Corrections to Lunar Landing w/Overlay (S66-05083)   S66-11019: Earth Launch Phase w/Overlay (S66-08485 & 05119)   S66-11020: Earth Launch Phase (S66-08487 & S66-05084)   S66-11022: Apollo Vehicles (S66-05127)   S66-11024: Transfer to LM (S66-05082)   S66-11025: Lunar Launch Phase   S66-11027: Trans-earth Separation of C/M from S/M-C/M return to Earth (S66-05097)   S66-11028: CSM-LM Separation, LM Descent to Moon (S66-05108)               MSC, Houston, TX         Also available in B&W      12/1965 - 06/1966
Artist Concepts - Apollo - MSC
Artist Concepts, Apollo Mission:        S66-10983: Ascent Stage Liftoff (S66-05094)   S66-10984: Orientation During Ascent Phase (S66-05098)   S66-10985: Midcourse Coast (S66-05113)   S66-10986: Survey of Landing Site (S66-05117)   S66-10987: Lunar Module (LM) Jettison (S66-05089)   S66-10988: Trans-Earth Injection (S66-05090)    S66-10989: Exploration on Lunar Surface Apollo Surface Lunar Exploration Experiment (ASLEP)   S66-10990: Liftoff (S66-05125)   S66-10991: Command Module (CM)-Service Module (SM) Separation (S66-05101 N/F)   S66-10992: Touchdown on Lunar Surface (S66-05115)   S66-10993: Transfer Orbit Insertion (S66-05111)   S66-10994: Drogue Parachute Deployment    S66-10995: S-IC Stage Separation S-II Stage Thrusting (S66-05099)   S66-10996: Jettison Launch Escape System (S66-05114)   S66-10997: Main Parachute Deployment (S66-05091)   S66-10998: Mid-course correction (S66-05088)   S66-10999: Lunar Orbit Insertion (S66-05086)   S66-11000: Command Service Module (CSM)-LM Docked in LM Adapter-S-IVB (S66-06526)   S66-11001: Docking and Separation of spacecraft from S-IVB (S66-05107)   S66-11002: Final Descent (S66-05096)   S66-11003: Entry into Earth Atmosphere (S66-05096)   S66-11004: Deploy S/C LM Adapter-Separate CSM from LM-S-IVB (S66-06525 & 05105)   S66-11005: Turnaround of CSM (S66-05104)   S66-11006: S-II Stage Separation S-IVB Stage Thrusting (S66-05102)   S66-11007: LM Ascent CSM Docked (S66-05100)   S66-11008: Midcourse Correction SPS Mode (S66-05106)   S66-11009: Earth Orbit Insertion of S-IVB & S/C (S66-05092)   S66-11010: Trans-lunar Injection (S66-05116)   S66-11011: LM Descent (S66-05110)   S66-11012: S-IVB Stage Operations (S66-05112 N/F)   S66-11013: Spacecraft Recovery (S66-05126)   S66-11014: Lunar Orbit (S66-05103)   S66-11015: CSM-LM Docking (S66-05095)   S66-11016: Entry CM (S66-5109)   S66-11017: Midcourse Corrections to Lunar Landing (S66-08486)   S66-11018: Midcourse Corrections to Lunar Landing w/Overlay (S66-05083)   S66-11019: Earth Launch Phase w/Overlay (S66-08485 & 05119)   S66-11020: Earth Launch Phase (S66-08487 & S66-05084)   S66-11022: Apollo Vehicles (S66-05127)   S66-11024: Transfer to LM (S66-05082)   S66-11025: Lunar Launch Phase   S66-11027: Trans-earth Separation of C/M from S/M-C/M return to Earth (S66-05097)   S66-11028: CSM-LM Separation, LM Descent to Moon (S66-05108)               MSC, Houston, TX         Also available in B&W      12/1965 - 06/1966
Artist Concepts - Apollo - MSC
Artist Concepts, Apollo Mission:        S66-10983: Ascent Stage Liftoff (S66-05094)   S66-10984: Orientation During Ascent Phase (S66-05098)   S66-10985: Midcourse Coast (S66-05113)   S66-10986: Survey of Landing Site (S66-05117)   S66-10987: Lunar Module (LM) Jettison (S66-05089)   S66-10988: Trans-Earth Injection (S66-05090)    S66-10989: Exploration on Lunar Surface Apollo Surface Lunar Exploration Experiment (ASLEP)   S66-10990: Liftoff (S66-05125)   S66-10991: Command Module (CM)-Service Module (SM) Separation (S66-05101 N/F)   S66-10992: Touchdown on Lunar Surface (S66-05115)   S66-10993: Transfer Orbit Insertion (S66-05111)   S66-10994: Drogue Parachute Deployment    S66-10995: S-IC Stage Separation S-II Stage Thrusting (S66-05099)   S66-10996: Jettison Launch Escape System (S66-05114)   S66-10997: Main Parachute Deployment (S66-05091)   S66-10998: Mid-course correction (S66-05088)   S66-10999: Lunar Orbit Insertion (S66-05086)   S66-11000: Command Service Module (CSM)-LM Docked in LM Adapter-S-IVB (S66-06526)   S66-11001: Docking and Separation of spacecraft from S-IVB (S66-05107)   S66-11002: Final Descent (S66-05096)   S66-11003: Entry into Earth Atmosphere (S66-05096)   S66-11004: Deploy S/C LM Adapter-Separate CSM from LM-S-IVB (S66-06525 & 05105)   S66-11005: Turnaround of CSM (S66-05104)   S66-11006: S-II Stage Separation S-IVB Stage Thrusting (S66-05102)   S66-11007: LM Ascent CSM Docked (S66-05100)   S66-11008: Midcourse Correction SPS Mode (S66-05106)   S66-11009: Earth Orbit Insertion of S-IVB & S/C (S66-05092)   S66-11010: Trans-lunar Injection (S66-05116)   S66-11011: LM Descent (S66-05110)   S66-11012: S-IVB Stage Operations (S66-05112 N/F)   S66-11013: Spacecraft Recovery (S66-05126)   S66-11014: Lunar Orbit (S66-05103)   S66-11015: CSM-LM Docking (S66-05095)   S66-11016: Entry CM (S66-5109)   S66-11017: Midcourse Corrections to Lunar Landing (S66-08486)   S66-11018: Midcourse Corrections to Lunar Landing w/Overlay (S66-05083)   S66-11019: Earth Launch Phase w/Overlay (S66-08485 & 05119)   S66-11020: Earth Launch Phase (S66-08487 & S66-05084)   S66-11022: Apollo Vehicles (S66-05127)   S66-11024: Transfer to LM (S66-05082)   S66-11025: Lunar Launch Phase   S66-11027: Trans-earth Separation of C/M from S/M-C/M return to Earth (S66-05097)   S66-11028: CSM-LM Separation, LM Descent to Moon (S66-05108)               MSC, Houston, TX         Also available in B&W      12/1965 - 06/1966
Artist Concepts - Apollo - MSC
Artist Concepts, Apollo Mission:        S66-10983: Ascent Stage Liftoff (S66-05094)   S66-10984: Orientation During Ascent Phase (S66-05098)   S66-10985: Midcourse Coast (S66-05113)   S66-10986: Survey of Landing Site (S66-05117)   S66-10987: Lunar Module (LM) Jettison (S66-05089)   S66-10988: Trans-Earth Injection (S66-05090)    S66-10989: Exploration on Lunar Surface Apollo Surface Lunar Exploration Experiment (ASLEP)   S66-10990: Liftoff (S66-05125)   S66-10991: Command Module (CM)-Service Module (SM) Separation (S66-05101 N/F)   S66-10992: Touchdown on Lunar Surface (S66-05115)   S66-10993: Transfer Orbit Insertion (S66-05111)   S66-10994: Drogue Parachute Deployment    S66-10995: S-IC Stage Separation S-II Stage Thrusting (S66-05099)   S66-10996: Jettison Launch Escape System (S66-05114)   S66-10997: Main Parachute Deployment (S66-05091)   S66-10998: Mid-course correction (S66-05088)   S66-10999: Lunar Orbit Insertion (S66-05086)   S66-11000: Command Service Module (CSM)-LM Docked in LM Adapter-S-IVB (S66-06526)   S66-11001: Docking and Separation of spacecraft from S-IVB (S66-05107)   S66-11002: Final Descent (S66-05096)   S66-11003: Entry into Earth Atmosphere (S66-05096)   S66-11004: Deploy S/C LM Adapter-Separate CSM from LM-S-IVB (S66-06525 & 05105)   S66-11005: Turnaround of CSM (S66-05104)   S66-11006: S-II Stage Separation S-IVB Stage Thrusting (S66-05102)   S66-11007: LM Ascent CSM Docked (S66-05100)   S66-11008: Midcourse Correction SPS Mode (S66-05106)   S66-11009: Earth Orbit Insertion of S-IVB & S/C (S66-05092)   S66-11010: Trans-lunar Injection (S66-05116)   S66-11011: LM Descent (S66-05110)   S66-11012: S-IVB Stage Operations (S66-05112 N/F)   S66-11013: Spacecraft Recovery (S66-05126)   S66-11014: Lunar Orbit (S66-05103)   S66-11015: CSM-LM Docking (S66-05095)   S66-11016: Entry CM (S66-5109)   S66-11017: Midcourse Corrections to Lunar Landing (S66-08486)   S66-11018: Midcourse Corrections to Lunar Landing w/Overlay (S66-05083)   S66-11019: Earth Launch Phase w/Overlay (S66-08485 & 05119)   S66-11020: Earth Launch Phase (S66-08487 & S66-05084)   S66-11022: Apollo Vehicles (S66-05127)   S66-11024: Transfer to LM (S66-05082)   S66-11025: Lunar Launch Phase   S66-11027: Trans-earth Separation of C/M from S/M-C/M return to Earth (S66-05097)   S66-11028: CSM-LM Separation, LM Descent to Moon (S66-05108)               MSC, Houston, TX         Also available in B&W      12/1965 - 06/1966
Artist Concepts - Apollo - MSC