
COCOA BEACH, Fla.. -- Todd May, program manager of the Space Launch System, receives a sculpture from the National Space Club after his address to the National Space Club's Florida Committee during the organization's monthly luncheon in Cocoa Beach, Fla. May, who works at NASA's Marshall Space Flight Center in Huntsville, Ala., discussed the status of the SLS program. Photo credit: NASA/Kim Shiflett

COCOA BEACH, Fla.. -- Todd May, program manager of the Space Launch System, addresses the National Space Club's Florida Committee during the organization's monthly luncheon in Cocoa Beach, Fla. May, who works at NASA's Marshall Space Flight Center in Huntsville, Ala., discussed the status of the SLS program. Photo credit: NASA/Kim Shiflett

COCOA BEACH, Fla.. -- Todd May, program manager of the Space Launch System, addresses the National Space Club's Florida Committee during the organization's monthly luncheon in Cocoa Beach, Fla. May, who works at NASA's Marshall Space Flight Center in Huntsville, Ala., discussed the status of the SLS program. Photo credit: NASA/Kim Shiflett

COCOA BEACH, Fla.. --Todd May, program manager of the Space Launch System, addresses the National Space Club's Florida Committee during the organization's monthly luncheon in Cocoa Beach, Fla. May, who works at NASA's Marshall Space Flight Center in Huntsville, Ala., discussed the status of the SLS program. Photo credit: NASA/Kim Shiflett

Vice President Mike Pence talks with Marshall Space Flight Center Director Todd May and Congressman Robert Aderholt (R-AL) (left) about NASA’s Space Launch System, the agency’s new deep space rocket. May explained progress being made on the rocket. The Vice President visited NASA Marshall in Huntsville, Alabama on Sept. 25, 2017, and saw SLS core stage engine section test hardware (on the right). The engine section is the bottom of the core stage where the four RS-25 engines attach and produce two million pounds of thrust. The SLS engine section is undergoing structural testing.

Marshall Space Flight Center Director Todd May (left) presents Vice President Mike Pence (center) with a Space Launch System model. May, Vice President Pence, and Congressman Robert Aderholt (R-AL) (right) are standing in front of an SLS test stand where the engine section, the bottom section of the 212-foot-tall core stage, is being tested. Earlier, engineers working on the test gave the Vice President a close up look at test hardware. The test hardware is for the SLS core stage engine section, which is the bottom of the core stage where the four RS-25 engines are housed. The engine section structure must withstand the incredible stresses produced by more than 8 million pounds of thrust during launch and ascent.

COCOA BEACH, Fla.. -- Robert Cabana, Kennedy Space Center director, left, speaks with a member of the National Space Club's Florida Committee before the organization's monthly luncheon. The event took place in Cocoa Beach, Fla. Photo credit: NASA/Kim Shiflett

TODD MAY, MANAGER, SPACE LAUNCH SYSTEM, IN HIS OFFICE

TODD MAY TALKS ABOUT NASA'S SPACE LAUNCH SYSTEM AND OTHER MISSIONS IN HIS OFFICE AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA. MAY WAS NAMED DEPUTY DIRECTOR OF MARSHALL IN AUGUST 2015.

From left to right, Lili Villareal, Operations Flow Manager, Exploration Ground Systems; Charlie Duke, NASA Astronaut (former); and Dottie Duke, wife of Charlie Duke, view the massive Space Launch System (SLS) core stage in Kennedy Space Center's Vehicle Assembly Building (VAB) in Florida on May 10, 2021. Inside the VAB, the SLS core stage is being prepared for integration with the completed stack of twin solid rocket boosters atop the mobile launcher ahead of the Artemis I launch. The first in a series of increasingly complex missions, Artemis I will test SLS and Orion as an integrated system prior to crewed flights to the Moon.

Charlie Duke, NASA Astronaut (former), shown in front of one of the aft booster segments for the Space Launch System inside the Kennedy Space Center's Vehicle Assembly Building (VAB) in Florida on May 10, 2021. Inside the VAB, the SLS core stage is being prepared for integration with the completed stack of solid rocket boosters atop the mobile launcher ahead of the Artemis I launch. The first in a series of increasingly complex missions, Artemis I will test SLS and Orion as an integrated system prior to crewed flights to the Moon.

Crawler-transporter 2 (CT-2) is underneath the mobile launcher May 31, 2018, at NASA's Kennedy Space Center in Florida. Three lifts will be performed to practice lifting procedures, validate interface locations, confirm the weight of the mobile launcher, and develop a baseline for modal analysis. The mobile launcher is equipped with a number of lines, called umbilicals, which will connect to NASA's Space Launch System (SLS) and Orion. CT-2 has been upgraded to handle the weight of the mobile launcher with SLS and Orion atop. Exploration Ground Systems is preparing the ground systems necessary to support the SLS and Orion spacecraft for Exploration Mission-1 and deep space missions.

Crawler-transporter 2 (CT-2) is being moved under the mobile launcher May 31, 2018, at NASA's Kennedy Space Center in Florida. Three lifts will be performed to practice lifting procedures, validate interface locations, confirm the weight of the mobile launcher, and develop a baseline for modal analysis. The mobile launcher is equipped with a number of lines, called umbilicals, which will connect to NASA's Space Launch System (SLS) and Orion. CT-2 has been upgraded to handle the weight of the mobile launcher with SLS and Orion atop. Exploration Ground Systems is preparing the ground systems necessary to support the SLS and Orion spacecraft for Exploration Mission-1 and deep space missions.

Crawler-transporter 2 (CT-2) is moved under the mobile launcher May 31, 2018, at NASA's Kennedy Space Center in Florida. Three lifts will be performed to practice lifting procedures, validate interface locations, confirm the weight of the mobile launcher, and develop a baseline for modal analysis. The mobile launcher is equipped with a number of lines, called umbilicals, which will connect to NASA's Space Launch System (SLS) and Orion. CT-2 has been upgraded to handle the weight of the mobile launcher with SLS and Orion atop. Exploration Ground Systems is preparing the ground systems necessary to support the SLS and Orion spacecraft for Exploration Mission-1 and deep space missions.

Preparations are underway May 31, 2018, to move crawler-transporter 2 (CT-2) under the mobile launcher at NASA's Kennedy Space Center in Florida. Three lifts will be performed to practice lifting procedures, validate interface locations, confirm the weight of the mobile launcher, and develop a baseline for modal analysis. The mobile launcher is equipped with a number of lines, called umbilicals, which will connect to NASA's Space Launch System (SLS) and Orion. CT-2 has been upgraded to handle the weight of the mobile launcher with SLS and Orion atop. Exploration Ground Systems is preparing the ground systems necessary to support the SLS and Orion spacecraft for Exploration Mission-1 and deep space missions.

Crawler-transporter 2 (CT-2) is underneath the mobile launcher May 31, 2018, at NASA's Kennedy Space Center in Florida. Three lifts were performed to practice lifting procedures, validate interface locations, confirm the weight of the mobile launcher, and develop a baseline for modal analysis. The mobile launcher is equipped with a number of lines, called umbilicals, which will connect to NASA's Space Launch System (SLS) and Orion. CT-2 has been upgraded to handle the weight of the mobile launcher with SLS and Orion atop. Exploration Ground Systems is preparing the ground systems necessary to support the SLS and Orion spacecraft for Exploration Mission-1 and deep space missions.

Preparations are underway May 31, 2018, to move crawler-transporter 2 (CT-2) under the mobile launcher at NASA's Kennedy Space Center in Florida. Three lifts will be performed to practice lifting procedures, validate interface locations, confirm the weight of the mobile launcher, and develop a baseline for modal analysis. The mobile launcher is equipped with a number of lines, called umbilicals, which will connect to NASA's Space Launch System (SLS) and Orion. CT-2 has been upgraded to handle the weight of the mobile launcher with SLS and Orion atop. Exploration Ground Systems is preparing the ground systems necessary to support the SLS and Orion spacecraft for Exploration Mission-1 and deep space missions.

Teams move a liquid hydrogen tank for NASA’s SLS (Space Launch System) rocket out of a priming cell and into an adjacent cell on May 20 at the agency’s Michoud Assembly Facility in New Orleans. Inside the cell, the tank, which will be used on the core stage of NASA’s Artemis III mission, will receive its thermal protection system. The thermal protection system, or spray-on foam insulation, provides protection to the core stage during launch. It is flexible enough to move with the rocket yet can withstand the aerodynamic pressures as the SLS accelerates from 0 to 17,500 mph and soars to more than 100 miles above the Earth. This third-generation insulation is more environmentally friendly and keeps the cryogenic propellant, which powers the rocket’s four RS-25 engines, extremely cold (the liquid hydrogen must remain at minus 423 degrees Fahrenheit/253 degrees Celsius) to remain in its liquid state. When applied the thermal protection system is a light-yellow color, which “tans” once exposed to the Sun’s ultraviolet rays, giving the SLS core stage its signature orange color.

Teams move a liquid hydrogen tank for NASA’s SLS (Space Launch System) rocket out of a priming cell and into an adjacent cell on May 20 at the agency’s Michoud Assembly Facility in New Orleans. Inside the cell, the tank, which will be used on the core stage of NASA’s Artemis III mission, will receive its thermal protection system. The thermal protection system, or spray-on foam insulation, provides protection to the core stage during launch. It is flexible enough to move with the rocket yet can withstand the aerodynamic pressures as the SLS accelerates from 0 to 17,500 mph and soars to more than 100 miles above the Earth. This third-generation insulation is more environmentally friendly and keeps the cryogenic propellant, which powers the rocket’s four RS-25 engines, extremely cold (the liquid hydrogen must remain at minus 423 degrees Fahrenheit/253 degrees Celsius) to remain in its liquid state. When applied the thermal protection system is a light-yellow color, which “tans” once exposed to the Sun’s ultraviolet rays, giving the SLS core stage its signature orange color.

Teams move a liquid hydrogen tank for NASA’s SLS (Space Launch System) rocket out of a priming cell and into an adjacent cell on May 20 at the agency’s Michoud Assembly Facility in New Orleans. Inside the cell, the tank, which will be used on the core stage of NASA’s Artemis III mission, will receive its thermal protection system. The thermal protection system, or spray-on foam insulation, provides protection to the core stage during launch. It is flexible enough to move with the rocket yet can withstand the aerodynamic pressures as the SLS accelerates from 0 to 17,500 mph and soars to more than 100 miles above the Earth. This third-generation insulation is more environmentally friendly and keeps the cryogenic propellant, which powers the rocket’s four RS-25 engines, extremely cold (the liquid hydrogen must remain at minus 423 degrees Fahrenheit/253 degrees Celsius) to remain in its liquid state. When applied the thermal protection system is a light-yellow color, which “tans” once exposed to the Sun’s ultraviolet rays, giving the SLS core stage its signature orange color.

Teams move a liquid hydrogen tank for NASA’s SLS (Space Launch System) rocket out of a priming cell and into an adjacent cell on May 20 at the agency’s Michoud Assembly Facility in New Orleans. Inside the cell, the tank, which will be used on the core stage of NASA’s Artemis III mission, will receive its thermal protection system. The thermal protection system, or spray-on foam insulation, provides protection to the core stage during launch. It is flexible enough to move with the rocket yet can withstand the aerodynamic pressures as the SLS accelerates from 0 to 17,500 mph and soars to more than 100 miles above the Earth. This third-generation insulation is more environmentally friendly and keeps the cryogenic propellant, which powers the rocket’s four RS-25 engines, extremely cold (the liquid hydrogen must remain at minus 423 degrees Fahrenheit/253 degrees Celsius) to remain in its liquid state. When applied the thermal protection system is a light-yellow color, which “tans” once exposed to the Sun’s ultraviolet rays, giving the SLS core stage its signature orange color.

Teams move a liquid hydrogen tank for NASA’s SLS (Space Launch System) rocket out of a priming cell and into an adjacent cell on May 20 at the agency’s Michoud Assembly Facility in New Orleans. Inside the cell, the tank, which will be used on the core stage of NASA’s Artemis III mission, will receive its thermal protection system. The thermal protection system, or spray-on foam insulation, provides protection to the core stage during launch. It is flexible enough to move with the rocket yet can withstand the aerodynamic pressures as the SLS accelerates from 0 to 17,500 mph and soars to more than 100 miles above the Earth. This third-generation insulation is more environmentally friendly and keeps the cryogenic propellant, which powers the rocket’s four RS-25 engines, extremely cold (the liquid hydrogen must remain at minus 423 degrees Fahrenheit/253 degrees Celsius) to remain in its liquid state. When applied the thermal protection system is a light-yellow color, which “tans” once exposed to the Sun’s ultraviolet rays, giving the SLS core stage its signature orange color.

Teams move a liquid hydrogen tank for NASA’s SLS (Space Launch System) rocket out of a priming cell and into an adjacent cell on May 20 at the agency’s Michoud Assembly Facility in New Orleans. Inside the cell, the tank, which will be used on the core stage of NASA’s Artemis III mission, will receive its thermal protection system. The thermal protection system, or spray-on foam insulation, provides protection to the core stage during launch. It is flexible enough to move with the rocket yet can withstand the aerodynamic pressures as the SLS accelerates from 0 to 17,500 mph and soars to more than 100 miles above the Earth. This third-generation insulation is more environmentally friendly and keeps the cryogenic propellant, which powers the rocket’s four RS-25 engines, extremely cold (the liquid hydrogen must remain at minus 423 degrees Fahrenheit/253 degrees Celsius) to remain in its liquid state. When applied the thermal protection system is a light-yellow color, which “tans” once exposed to the Sun’s ultraviolet rays, giving the SLS core stage its signature orange color.

Teams move a liquid hydrogen tank for NASA’s SLS (Space Launch System) rocket out of a priming cell and into an adjacent cell on May 20 at the agency’s Michoud Assembly Facility in New Orleans. Inside the cell, the tank, which will be used on the core stage of NASA’s Artemis III mission, will receive its thermal protection system. The thermal protection system, or spray-on foam insulation, provides protection to the core stage during launch. It is flexible enough to move with the rocket yet can withstand the aerodynamic pressures as the SLS accelerates from 0 to 17,500 mph and soars to more than 100 miles above the Earth. This third-generation insulation is more environmentally friendly and keeps the cryogenic propellant, which powers the rocket’s four RS-25 engines, extremely cold (the liquid hydrogen must remain at minus 423 degrees Fahrenheit/253 degrees Celsius) to remain in its liquid state. When applied the thermal protection system is a light-yellow color, which “tans” once exposed to the Sun’s ultraviolet rays, giving the SLS core stage its signature orange color.

Teams move a liquid hydrogen tank for NASA’s SLS (Space Launch System) rocket out of a priming cell and into an adjacent cell on May 20 at the agency’s Michoud Assembly Facility in New Orleans. Inside the cell, the tank, which will be used on the core stage of NASA’s Artemis III mission, will receive its thermal protection system. The thermal protection system, or spray-on foam insulation, provides protection to the core stage during launch. It is flexible enough to move with the rocket yet can withstand the aerodynamic pressures as the SLS accelerates from 0 to 17,500 mph and soars to more than 100 miles above the Earth. This third-generation insulation is more environmentally friendly and keeps the cryogenic propellant, which powers the rocket’s four RS-25 engines, extremely cold (the liquid hydrogen must remain at minus 423 degrees Fahrenheit/253 degrees Celsius) to remain in its liquid state. When applied the thermal protection system is a light-yellow color, which “tans” once exposed to the Sun’s ultraviolet rays, giving the SLS core stage its signature orange color.

Teams move a liquid hydrogen tank for NASA’s SLS (Space Launch System) rocket out of a priming cell and into an adjacent cell on May 20 at the agency’s Michoud Assembly Facility in New Orleans. Inside the cell, the tank, which will be used on the core stage of NASA’s Artemis III mission, will receive its thermal protection system. The thermal protection system, or spray-on foam insulation, provides protection to the core stage during launch. It is flexible enough to move with the rocket yet can withstand the aerodynamic pressures as the SLS accelerates from 0 to 17,500 mph and soars to more than 100 miles above the Earth. This third-generation insulation is more environmentally friendly and keeps the cryogenic propellant, which powers the rocket’s four RS-25 engines, extremely cold (the liquid hydrogen must remain at minus 423 degrees Fahrenheit/253 degrees Celsius) to remain in its liquid state. When applied the thermal protection system is a light-yellow color, which “tans” once exposed to the Sun’s ultraviolet rays, giving the SLS core stage its signature orange color.

Teams move a liquid hydrogen tank for NASA’s SLS (Space Launch System) rocket out of a priming cell and into an adjacent cell on May 20 at the agency’s Michoud Assembly Facility in New Orleans. Inside the cell, the tank, which will be used on the core stage of NASA’s Artemis III mission, will receive its thermal protection system. The thermal protection system, or spray-on foam insulation, provides protection to the core stage during launch. It is flexible enough to move with the rocket yet can withstand the aerodynamic pressures as the SLS accelerates from 0 to 17,500 mph and soars to more than 100 miles above the Earth. This third-generation insulation is more environmentally friendly and keeps the cryogenic propellant, which powers the rocket’s four RS-25 engines, extremely cold (the liquid hydrogen must remain at minus 423 degrees Fahrenheit/253 degrees Celsius) to remain in its liquid state. When applied the thermal protection system is a light-yellow color, which “tans” once exposed to the Sun’s ultraviolet rays, giving the SLS core stage its signature orange color.

Teams move a liquid hydrogen tank for NASA’s SLS (Space Launch System) rocket out of a priming cell and into an adjacent cell on May 20 at the agency’s Michoud Assembly Facility in New Orleans. Inside the cell, the tank, which will be used on the core stage of NASA’s Artemis III mission, will receive its thermal protection system. The thermal protection system, or spray-on foam insulation, provides protection to the core stage during launch. It is flexible enough to move with the rocket yet can withstand the aerodynamic pressures as the SLS accelerates from 0 to 17,500 mph and soars to more than 100 miles above the Earth. This third-generation insulation is more environmentally friendly and keeps the cryogenic propellant, which powers the rocket’s four RS-25 engines, extremely cold (the liquid hydrogen must remain at minus 423 degrees Fahrenheit/253 degrees Celsius) to remain in its liquid state. When applied the thermal protection system is a light-yellow color, which “tans” once exposed to the Sun’s ultraviolet rays, giving the SLS core stage its signature orange color.

From left to right, Jim Keys, Pilot; Dottie Duke, wife of Charlie Duke, Charlie Duke, NASA Astronaut (former); Christina Korp, Assistant to Charlie Duke; and Nicole Stott, NASA Astronaut (former) pose in front of the massive Space Launch System (SLS) core stage in Kennedy Space Center's Vehicle Assembly Building (VAB) in Florida on May 10, 2021. Inside the VAB, the SLS core stage is being prepared for integration with the completed stack of solid rocket boosters atop the mobile launcher ahead of the Artemis I launch. The first in a series of increasingly complex missions, Artemis I will test SLS and Orion as an integrated system prior to crewed flights to the Moon.

Charlie Duke, NASA Astronaut (former), and Dottie Duke, wife of Charlie Duke, shown in front of the massive Space Launch System (SLS) core stage in Kennedy Space Center's Vehicle Assembly Building (VAB) in Florida on May 10, 2021. Inside the VAB, the SLS core stage is being prepared for integration with the completed stack of twin solid rocket boosters atop the mobile launcher ahead of the Artemis I launch. The first in a series of increasingly complex missions, Artemis I will test SLS and Orion as an integrated system prior to crewed flights to the Moon.

MORE THAN 250 PEOPLE FROM ACROSS NASA'S MARSHALL SPACE FLIGHT CENTER PARTICIPATED IN THE SPACE LAUNCH SYSTEM (SLS) POST-PRELIMINARY DESIGN REVIEW REPORT, HELD AUG. 5 IN ACTIVITIES BUILDING 4316. DISCUSSING THE REVIEW AND THANKING THE MARSHALL TEAM FOR A JOB WELL DONE, ARE FROM LEFT, GARRY LYLES, SLS CHIEF ENGINEER; TODD MAY, MANAGER OF THE SLS PROGRAM; STEVE CASH, DIRECTOR OF MARSHALL’S SAFETY & MISSION ASSURANCE DIRECTORATE; AND CHRIS SINGER, MANAGER OF MARSHALL’S ENGINEERING DIRECTORATE

At NASA's Kennedy Space Center in Florida, members of the news media are briefed on the agency's Space Launch System SLS Program by Todd May, program manager for Space Launch Systems SLS at NASA's Marshall Space Flight Center in Huntsville, Alabama. The briefing took place in the spaceport's Booster Fabrication Facility BFF. During the Space Shuttle Program, the facility was used for processing forward segments and aft skirts for the solid rocket boosters. The BFF will serve a similar role for the SLS. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.

Teams with NASA’s Exploration Ground Systems Program finish integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Thursday, May 1, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. The four-story propulsion system, built by Boeing and ULA (United Launch Alliance), is powered by an RL10 engine that will enable the Orion spacecraft to build up enough speed for the push toward the Moon during the Artemis II crewed test flight.

Teams with NASA’s Exploration Ground Systems Program finish integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Thursday, May 1, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. The four-story propulsion system, built by Boeing and ULA (United Launch Alliance), is powered by an RL10 engine that will enable the Orion spacecraft to build up enough speed for the push toward the Moon during the Artemis II crewed test flight.

Teams with NASA’s Exploration Ground Systems Program finish integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Thursday, May 1, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. The four-story propulsion system, built by Boeing and ULA (United Launch Alliance), is powered by an RL10 engine that will enable the Orion spacecraft to build up enough speed for the push toward the Moon during the Artemis II crewed test flight.

Teams with NASA’s Exploration Ground Systems Program finish integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Thursday, May 1, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. The four-story propulsion system, built by Boeing and ULA (United Launch Alliance), is powered by an RL10 engine that will enable the Orion spacecraft to build up enough speed for the push toward the Moon during the Artemis II crewed test flight.

Painting of the NASA logo, also called the meatball, is underway on the 525-foot-tall Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida on May 8, 2020. HM2 and H.I.S. Painting of Titusville, Florida, are repainting the meatball and the American Flag on the iconic building. High Bay 3 inside the VAB has been upgraded with 10 new levels of work platforms that will surround and provide access for service and processing of NASA's Space Launch System (SLS) rocket and Orion spacecraft. Exploration Ground Systems is overseeing upgrades to the VAB to support the launch of the SLS and Orion for Artemis missions. Under the Artemis program, NASA will send the first woman and next man to the Moon.

Painting of the NASA logo, also called the meatball, continues on the 525-foot-tall Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida on May 29 2020. HM2 and H.I.S. Painting of Titusville, Florida, are repainting the meatball and the American Flag on the iconic building. High Bay 3 inside the VAB has been upgraded with 10 new levels of work platforms that will surround and provide access for service and processing of NASA's Space Launch System (SLS) rocket and Orion spacecraft. Exploration Ground Systems is overseeing upgrades to the VAB to support the launch of the SLS and Orion for Artemis missions. Under the Artemis program, NASA will send the first woman and next man to the Moon.

Painting of the NASA logo, also called the meatball, continues on the 525-foot-tall Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida on May 29 2020. HM2 and H.I.S. Painting of Titusville, Florida, are repainting the meatball and the American Flag on the iconic building. High Bay 3 inside the VAB has been upgraded with 10 new levels of work platforms that will surround and provide access for service and processing of NASA's Space Launch System (SLS) rocket and Orion spacecraft. Exploration Ground Systems is overseeing upgrades to the VAB to support the launch of the SLS and Orion for Artemis missions. Under the Artemis program, NASA will send the first woman and next man to the Moon.

Painting of the NASA logo, also called the meatball, is underway on the 525-foot-tall Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida on May 8, 2020. HM2 and H.I.S. Painting of Titusville, Florida, are repainting the meatball and the American Flag on the iconic building. High Bay 3 inside the VAB has been upgraded with 10 new levels of work platforms that will surround and provide access for service and processing of NASA's Space Launch System (SLS) rocket and Orion spacecraft. Exploration Ground Systems is overseeing upgrades to the VAB to support the launch of the SLS and Orion for Artemis missions. Under the Artemis program, NASA will send the first woman and next man to the Moon.

Painting of the NASA logo, also called the meatball, is underway on the 525-foot-tall Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida on May 8, 2020. HM2 and H.I.S. Painting of Titusville, Florida, are repainting the meatball and the American Flag on the iconic building. High Bay 3 inside the VAB has been upgraded with 10 new levels of work platforms that will surround and provide access for service and processing of NASA's Space Launch System (SLS) rocket and Orion spacecraft. Exploration Ground Systems is overseeing upgrades to the VAB to support the launch of the SLS and Orion for Artemis missions. Under the Artemis program, NASA will send the first woman and next man to the Moon.

Painting of the NASA logo, also called the meatball, is underway on the 525-foot-tall Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida on May 8, 2020. HM2 and H.I.S. Painting of Titusville, Florida, are repainting the meatball and the American Flag on the iconic building. High Bay 3 inside the VAB has been upgraded with 10 new levels of work platforms that will surround and provide access for service and processing of NASA's Space Launch System (SLS) rocket and Orion spacecraft. Exploration Ground Systems is overseeing upgrades to the VAB to support the launch of the SLS and Orion for Artemis missions. Under the Artemis program, NASA will send the first woman and next man to the Moon.

CAPE CANAVERAL, Fla. – An exterior view of Hangar AF at Cape Canaveral Air Force Station in Florida. The facility may be used by the Ground Systems Development and Operations Program at Kennedy Space Center for production activities for NASA’s Space Launch System, or SLS. The booster aft and forward skirts and case stiffener attach ring may be processed in the hangar, as well as refurbishment of the frustrum, before they are transferred to the Booster Fabrication Facility for buildup. The SLS rocket will launch the Orion spacecraft on an uncrewed flight test scheduled for 2017. Orion ’s first unpiloted test flight, Exploration Flight Test 1, is scheduled to launch in 2014 atop a Delta IV rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Dimitri Gerondidakis

These images and videos show technicians at NASA’s Michoud Assembly Facility in New Orleans examining and lifting midbody barrels for the Exploration Upper Stage (EUS) structural test article of the SLS (Space Launch System) rocket in May 2023. The barrel sections make up the body, or main structure, of the future in-space propulsion stage for the mega rocket. The Exploration Upper Stage will be used on the second configuration of the SLS rocket, known as Block 1B, and will provide in-space propulsion to send astronauts in NASA’s Orion spacecraft and heavy cargo on a precise trajectory to the Moon. Beginning with Artemis IV, EUS will replace the interim cryogenic propulsion stage for the Block 1 configuration of SLS. It has larger propellant tanks and four RL10 engines, enabling SLS to launch 40% more cargo to the Moon along with crew. EUS flight hardware is in early production at Michoud. Crews with NASA and Boeing, the lead contractor for the SLS core stage and EUS, are also manufacturing the EUS structural test article. The test hardware is structurally identical to the flight version and will be used during a series of strenuous testing that simulates the forces the rocket will experience during launch and flight and verify its structural integrity. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

These images and videos show technicians at NASA’s Michoud Assembly Facility in New Orleans examining and lifting midbody barrels for the Exploration Upper Stage (EUS) structural test article of the SLS (Space Launch System) rocket in May 2023. The barrel sections make up the body, or main structure, of the future in-space propulsion stage for the mega rocket. The Exploration Upper Stage will be used on the second configuration of the SLS rocket, known as Block 1B, and will provide in-space propulsion to send astronauts in NASA’s Orion spacecraft and heavy cargo on a precise trajectory to the Moon. Beginning with Artemis IV, EUS will replace the interim cryogenic propulsion stage for the Block 1 configuration of SLS. It has larger propellant tanks and four RL10 engines, enabling SLS to launch 40% more cargo to the Moon along with crew. EUS flight hardware is in early production at Michoud. Crews with NASA and Boeing, the lead contractor for the SLS core stage and EUS, are also manufacturing the EUS structural test article. The test hardware is structurally identical to the flight version and will be used during a series of strenuous testing that simulates the forces the rocket will experience during launch and flight and verify its structural integrity. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

These images and videos show technicians at NASA’s Michoud Assembly Facility in New Orleans examining and lifting midbody barrels for the Exploration Upper Stage (EUS) structural test article of the SLS (Space Launch System) rocket in May 2023. The barrel sections make up the body, or main structure, of the future in-space propulsion stage for the mega rocket. The Exploration Upper Stage will be used on the second configuration of the SLS rocket, known as Block 1B, and will provide in-space propulsion to send astronauts in NASA’s Orion spacecraft and heavy cargo on a precise trajectory to the Moon. Beginning with Artemis IV, EUS will replace the interim cryogenic propulsion stage for the Block 1 configuration of SLS. It has larger propellant tanks and four RL10 engines, enabling SLS to launch 40% more cargo to the Moon along with crew. EUS flight hardware is in early production at Michoud. Crews with NASA and Boeing, the lead contractor for the SLS core stage and EUS, are also manufacturing the EUS structural test article. The test hardware is structurally identical to the flight version and will be used during a series of strenuous testing that simulates the forces the rocket will experience during launch and flight and verify its structural integrity. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

These images and videos show technicians at NASA’s Michoud Assembly Facility in New Orleans examining and lifting midbody barrels for the Exploration Upper Stage (EUS) structural test article of the SLS (Space Launch System) rocket in May 2023. The barrel sections make up the body, or main structure, of the future in-space propulsion stage for the mega rocket. The Exploration Upper Stage will be used on the second configuration of the SLS rocket, known as Block 1B, and will provide in-space propulsion to send astronauts in NASA’s Orion spacecraft and heavy cargo on a precise trajectory to the Moon. Beginning with Artemis IV, EUS will replace the interim cryogenic propulsion stage for the Block 1 configuration of SLS. It has larger propellant tanks and four RL10 engines, enabling SLS to launch 40% more cargo to the Moon along with crew. EUS flight hardware is in early production at Michoud. Crews with NASA and Boeing, the lead contractor for the SLS core stage and EUS, are also manufacturing the EUS structural test article. The test hardware is structurally identical to the flight version and will be used during a series of strenuous testing that simulates the forces the rocket will experience during launch and flight and verify its structural integrity. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

These images and videos show technicians at NASA’s Michoud Assembly Facility in New Orleans examining and lifting midbody barrels for the Exploration Upper Stage (EUS) structural test article of the SLS (Space Launch System) rocket in May 2023. The barrel sections make up the body, or main structure, of the future in-space propulsion stage for the mega rocket. The Exploration Upper Stage will be used on the second configuration of the SLS rocket, known as Block 1B, and will provide in-space propulsion to send astronauts in NASA’s Orion spacecraft and heavy cargo on a precise trajectory to the Moon. Beginning with Artemis IV, EUS will replace the interim cryogenic propulsion stage for the Block 1 configuration of SLS. It has larger propellant tanks and four RL10 engines, enabling SLS to launch 40% more cargo to the Moon along with crew. EUS flight hardware is in early production at Michoud. Crews with NASA and Boeing, the lead contractor for the SLS core stage and EUS, are also manufacturing the EUS structural test article. The test hardware is structurally identical to the flight version and will be used during a series of strenuous testing that simulates the forces the rocket will experience during launch and flight and verify its structural integrity. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

These images and videos show technicians at NASA’s Michoud Assembly Facility in New Orleans examining and lifting midbody barrels for the Exploration Upper Stage (EUS) structural test article of the SLS (Space Launch System) rocket in May 2023. The barrel sections make up the body, or main structure, of the future in-space propulsion stage for the mega rocket. The Exploration Upper Stage will be used on the second configuration of the SLS rocket, known as Block 1B, and will provide in-space propulsion to send astronauts in NASA’s Orion spacecraft and heavy cargo on a precise trajectory to the Moon. Beginning with Artemis IV, EUS will replace the interim cryogenic propulsion stage for the Block 1 configuration of SLS. It has larger propellant tanks and four RL10 engines, enabling SLS to launch 40% more cargo to the Moon along with crew. EUS flight hardware is in early production at Michoud. Crews with NASA and Boeing, the lead contractor for the SLS core stage and EUS, are also manufacturing the EUS structural test article. The test hardware is structurally identical to the flight version and will be used during a series of strenuous testing that simulates the forces the rocket will experience during launch and flight and verify its structural integrity. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On Thursday, May 9, 2024, teams with NASA’s Exploration Ground Systems Program and primary contractor, Bechtel National, Inc., continue moving the base structure of mobile launcher 2 to a permanent mount structure where assembly will be completed at Kennedy Space Center in Florida. The 355-foot-tall mobile launcher 2 with a two-story base and a tower will be used to assemble and process the SLS (Space Launch System) rocket and Orion spacecraft in the Vehicle Assembly Building on NASA’s upcoming Artemis missions to the Moon beginning with Artemis IV.

On Thursday, May 9, 2024, teams with NASA’s Exploration Ground Systems Program and primary contractor, Bechtel National, Inc., continue moving the base structure of mobile launcher 2 to a permanent mount structure where assembly will be completed at Kennedy Space Center in Florida. The 355-foot-tall mobile launcher 2 with a two-story base and a tower will be used to assemble and process the SLS (Space Launch System) rocket and Orion spacecraft in the Vehicle Assembly Building on NASA’s upcoming Artemis missions to the Moon beginning with Artemis IV.

On Thursday, May 9, 2024, teams with NASA’s Exploration Ground Systems Program and primary contractor, Bechtel National, Inc., continue moving the base structure of mobile launcher 2 to a permanent mount structure where assembly will be completed at Kennedy Space Center in Florida. The 355-foot-tall mobile launcher 2 with a two-story base and a tower will be used to assemble and process the SLS (Space Launch System) rocket and Orion spacecraft in the Vehicle Assembly Building on NASA’s upcoming Artemis missions to the Moon beginning with Artemis IV.

On Thursday, May 9, 2024, teams with NASA’s Exploration Ground Systems Program and primary contractor, Bechtel National, Inc., continue moving the base structure of mobile launcher 2 to a permanent mount structure where assembly will be completed at Kennedy Space Center in Florida. The 355-foot-tall mobile launcher 2 with a two-story base and a tower will be used to assemble and process the SLS (Space Launch System) rocket and Orion spacecraft in the Vehicle Assembly Building on NASA’s upcoming Artemis missions to the Moon beginning with Artemis IV.

RS-25 rocket engine No. 2059 is removed from the A-1 Test Stand at Stennis Space Center on May 19, 2016. The engine was tested March 10 on the stand and is ready for use on NASA’s new Space Launch System (SLS) vehicle. NASA is developing the SLS to carry humans deeper into space than ever before. The SLS core stage will be powered by four RS-25 engines. Engine No. 2059 is scheduled for use on the first crewed SLS mission, Exploration Mission-2, which will carry American astronauts beyond low-Earth orbit for the first time since 1972. The photo above shows the engine, as well as the yellow thrust frame adapter above it, which holds the engine in place for testing.

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, members of the news media are briefed on the agency's Space Launch System SLS Program Todd May, program manager for Space Launch Systems SLS at NASA's Marshall Space Flight Center in Huntsville, Alabama. The briefing took place in the spaceport's Booster Fabrication Facility BFF. During the Space Shuttle Program, the facility was used for processing forward segments and aft skirts for the solid rocket boosters. The BFF will serve a similar role for the SLS. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, members of the news media are briefed on the agency's Space Launch System SLS Program Todd May, program manager for Space Launch Systems SLS at NASA's Marshall Space Flight Center in Huntsville, Alabama. The briefing took place in the spaceport's Booster Fabrication Facility BFF. During the Space Shuttle Program, the facility was used for processing forward segments and aft skirts for the solid rocket boosters. The BFF will serve a similar role for the SLS. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett

The Space Launch System (SLS) core stage for NASA’s Artemis I mission is in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center in Florida on May 5, 2021. In view are the core stage’s four RS-25 engines in protective covers. Teams from the center’s Exploration Ground Systems and contractor Jacobs will perform checkouts ahead of integrating the massive rocket stage with the twin solid rocket boosters, Orion spacecraft, and additional flight hardware ahead of the Artemis I launch. Artemis I will be the first integrated test of SLS and Orion and will pave the way for landing the first woman and first person of color on the lunar surface. It will be a proving ground for deep space exploration, leading the agency’s efforts under the Artemis program for a sustainable presence on the Moon and preparing for human missions to Mars.

The Space Launch System (SLS) core stage for NASA’s Artemis I mission is in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center in Florida on May 5, 2021. Teams from the center’s Exploration Ground Systems and contractor Jacobs will perform checkouts ahead of integrating the massive rocket stage with the twin solid rocket boosters, Orion spacecraft, and additional flight hardware ahead of the Artemis I launch. Artemis I will be the first integrated test of SLS and Orion and will pave the way for landing the first woman and first person of color on the lunar surface. It will be a proving ground for deep space exploration, leading the agency’s efforts under the Artemis program for a sustainable presence on the Moon and preparing for human missions to Mars.

The Space Launch System (SLS) core stage for NASA’s Artemis I mission is in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center in Florida on May 5, 2021. Teams from the center’s Exploration Ground Systems and contractor Jacobs will perform checkouts ahead of integrating the massive rocket stage with the twin solid rocket boosters, Orion spacecraft, and additional flight hardware ahead of the Artemis I launch. Artemis I will be the first integrated test of SLS and Orion and will pave the way for landing the first woman and first person of color on the lunar surface. It will be a proving ground for deep space exploration, leading the agency’s efforts under the Artemis program for a sustainable presence on the Moon and preparing for human missions to Mars.

The Space Launch System (SLS) core stage for NASA’s Artemis I mission is in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center in Florida on May 5, 2021. Teams from the center’s Exploration Ground Systems and contractor Jacobs will perform checkouts ahead of integrating the massive rocket stage with the twin solid rocket boosters, Orion spacecraft, and additional flight hardware ahead of the Artemis I launch. Artemis I will be the first integrated test of SLS and Orion and will pave the way for landing the first woman and first person of color on the lunar surface. It will be a proving ground for deep space exploration, leading the agency’s efforts under the Artemis program for a sustainable presence on the Moon and preparing for human missions to Mars.

From left to right, Jim Keys, Pilot; Christina Korp, Assistant to Charlie Duke; Nicole Stott, NASA Astronaut (former); Dottie Duke, wife of Charlie Duke, Charlie Duke, NASA Astronaut (former); and Lili Villareal, Operations Flow Manager, Exploration Ground Systems tour the inside of the Vehicle Assembly Building (VAB) during a visit to NASA’s Kennedy Space Center in Florida on May 10, 2021. Visible in the background are the aft booster segments for the Space Launch System. The first in a series of increasingly complex missions, Artemis I will test Orion and SLS as an integrated system prior to crewed flights to the Moon.

NASA Administrator Bill Nelson, left, shows Secretary of Education Miguel Cardona, right, a model of NASA’s Space Launch System (SLS) and Orion capsule prior to a memorandum of understanding (MOU) signing ceremony, Wednesday, May 24, 2023, at the Mary W. Jackson NASA Headquarters building in Washington. The NASA and Department of Education MOU is focused on strengthening the collaboration between the two agencies, including efforts that advance STEM education across the nation. Photo Credit: (NASA/Keegan Barber)

Louisiana Gov. John Bel Edwards visited NASA’s Michoud Assembly Facility in New Orleans and spoke about the state’s partnerships with NASA and the 20 companies and government agencies located at the facility. NASA is building its new deep space rocket, the Space Launch System, and the Orion spacecraft at Michoud.

NASA officials were joined by Louisiana Gov. John Bel Edwards and New Orleans Mayor Mitch Landrieu, who toured the Michoud Assembly Facility in New Orleans and got a first-hand look at NASA’s new deep space vehicles being built at the facility.

Orion’s service module for NASA’s Artemis 1 mission was moved from a test stand to a test cell inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on May 22, 2019. With microphones, strain gauges and accelerometers attached, the service module will undergo acoustic testing to check for flaws, the latest step in preparing for the agency’s first uncrewed flight test of Orion on the Space Launch System (SLS) rocket. Artemis 1 will be the first mission launching Orion on the SLS rocket from Kennedy’s Launch Pad 39B. The mission will take Orion thousands of miles past the Moon on an approximately three-week test flight. Orion will return to Earth and splashdown in the Pacific Ocean off the coast of California, where it will be retrieved and returned to Kennedy.

Orion’s service module for NASA’s Artemis 1 mission was moved from a test stand to a test cell inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on May 22, 2019. With microphones, strain gauges and accelerometers attached, the service module will undergo acoustic testing to check for flaws, the latest step in preparing for the agency’s first uncrewed flight test of Orion on the Space Launch System (SLS) rocket. Artemis 1 will be the first mission launching Orion on the SLS rocket from Kennedy’s Launch Pad 39B. The mission will take Orion thousands of miles past the Moon on an approximately three-week test flight. Orion will return to Earth and splashdown in the Pacific Ocean off the coast of California, where it will be retrieved and returned to Kennedy.

Orion’s service module for NASA’s Artemis 1 mission was moved from a test stand to a test cell inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on May 22, 2019. With microphones, strain gauges and accelerometers attached, the service module will undergo acoustic testing to check for flaws, the latest step in preparing for the agency’s first uncrewed flight test of Orion on the Space Launch System (SLS) rocket. Artemis 1 will be the first mission launching Orion on the SLS rocket from Kennedy’s Launch Pad 39B. The mission will take Orion thousands of miles past the Moon on an approximately three-week test flight. Orion will return to Earth and splashdown in the Pacific Ocean off the coast of California, where it will be retrieved and returned to Kennedy.

Orion’s service module for NASA’s Artemis 1 mission was moved from a test stand to a test cell inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on May 22, 2019. With microphones, strain gauges and accelerometers attached, the service module will undergo acoustic testing to check for flaws, the latest step in preparing for the agency’s first uncrewed flight test of Orion on the Space Launch System (SLS) rocket. Artemis 1 will be the first mission launching Orion on the SLS rocket from Kennedy’s Launch Pad 39B. The mission will take Orion thousands of miles past the Moon on an approximately three-week test flight. Orion will return to Earth and splashdown in the Pacific Ocean off the coast of California, where it will be retrieved and returned to Kennedy.

Orion’s service module for NASA’s Artemis 1 mission was moved from a test stand to a test cell inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on May 22, 2019. With microphones, strain gauges and accelerometers attached, the service module will undergo acoustic testing to check for flaws, the latest step in preparing for the agency’s first uncrewed flight test of Orion on the Space Launch System (SLS) rocket. Artemis 1 will be the first mission launching Orion on the SLS rocket from Kennedy’s Launch Pad 39B. The mission will take Orion thousands of miles past the Moon on an approximately three-week test flight. Orion will return to Earth and splashdown in the Pacific Ocean off the coast of California, where it will be retrieved and returned to Kennedy.

Orion’s service module for NASA’s Artemis 1 mission was moved from a test stand to a test cell inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on May 22, 2019. With microphones, strain gauges and accelerometers attached, the service module will undergo acoustic testing to check for flaws, the latest step in preparing for the agency’s first uncrewed flight test of Orion on the Space Launch System (SLS) rocket. Artemis 1 will be the first mission launching Orion on the SLS rocket from Kennedy’s Launch Pad 39B. The mission will take Orion thousands of miles past the Moon on an approximately three-week test flight. Orion will return to Earth and splashdown in the Pacific Ocean off the coast of California, where it will be retrieved and returned to Kennedy.

Teams with NASA’s Exploration Ground Systems Program and primary contractor, Bechtel National, Inc., pose for a photo near construction of a permanent mount structure where they will continue building the agency’s new mobile launcher 2 at Kennedy Space Center in Florida on Thursday, May 9, 2024. The 355-foot-tall mobile launcher 2 with a two-story base and a tower will be used to assemble and process the SLS (Space Launch System) rocket and Orion spacecraft in the Vehicle Assembly Building on NASA’s upcoming Artemis missions to the Moon beginning with Artemis IV.

NASA engineers and technicians pose for a photograph in front of the agency’s Artemis II Orion spacecraft on Thursday, Aug. 7, 2025, inside the Multi-Payload Processing Facility (MPPF) at NASA’s Kennedy Space Center in Florida. Orion arrived at the MPPF in early May for fueling and processing and will next head to the spaceport’s Launch Abort System Facility to be integrated with its 44-foot-tall launch abort system. Once integration is complete, the stack will be transported to High Bay 3 inside NASA Kennedy’s Vehicle Assembly Building and integrated with the SLS (Space Launch System) rocket that will launch NASA’s Artemis II astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen around the Moon and back.

Technicians at NASA’s Michoud Assembly Facility prepare to move the engine section of NASA’s Space Launch System rocket for Artemis IV to the Vertical Assembly Building for the next step in production. This hardware is the first large piece manufactured for the Artemis IV mission and makes up the lowest portion of the 212-foot-tall core stage. When complete, the engine section will house the four RS-25 engines and include vital systems for mounting, controlling and delivering fuel from the propellant tanks to the rocket’s engines. Together with its four RS-25 engines and its twin solid rocket boosters, it will produce 8.8 million pounds of thrust to send NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit to the Moon and, ultimately, Mars. Offering more payload mass, volume capability, and energy to speed missions through space, the SLS rocket, along with NASA’s Gateway in lunar orbit, the Human Landing System, and Orion spacecraft, is part of NASA’s backbone for deep space exploration and the Artemis lunar program. No other rocket is capable of carrying astronauts in Orion around the Moon in a single mission. Photographed on Thursday, May 12, 2022. Image credit: NASA/Michael DeMocker

Technicians at NASA’s Michoud Assembly Facility prepare to move the engine section of NASA’s Space Launch System rocket for Artemis IV to the Vertical Assembly Building for the next step in production. This hardware is the first large piece manufactured for the Artemis IV mission and makes up the lowest portion of the 212-foot-tall core stage. When complete, the engine section will house the four RS-25 engines and include vital systems for mounting, controlling and delivering fuel from the propellant tanks to the rocket’s engines. Together with its four RS-25 engines and its twin solid rocket boosters, it will produce 8.8 million pounds of thrust to send NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit to the Moon and, ultimately, Mars. Offering more payload mass, volume capability, and energy to speed missions through space, the SLS rocket, along with NASA’s Gateway in lunar orbit, the Human Landing System, and Orion spacecraft, is part of NASA’s backbone for deep space exploration and the Artemis lunar program. No other rocket is capable of carrying astronauts in Orion around the Moon in a single mission. Photographed on Thursday, May 12, 2022. Image credit: NASA/Michael DeMocker

Technicians at NASA’s Michoud Assembly Facility prepare to move the engine section of NASA’s Space Launch System rocket for Artemis IV to the Vertical Assembly Building for the next step in production. This hardware is the first large piece manufactured for the Artemis IV mission and makes up the lowest portion of the 212-foot-tall core stage. When complete, the engine section will house the four RS-25 engines and include vital systems for mounting, controlling and delivering fuel from the propellant tanks to the rocket’s engines. Together with its four RS-25 engines and its twin solid rocket boosters, it will produce 8.8 million pounds of thrust to send NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit to the Moon and, ultimately, Mars. Offering more payload mass, volume capability, and energy to speed missions through space, the SLS rocket, along with NASA’s Gateway in lunar orbit, the Human Landing System, and Orion spacecraft, is part of NASA’s backbone for deep space exploration and the Artemis lunar program. No other rocket is capable of carrying astronauts in Orion around the Moon in a single mission. Photographed on Thursday, May 12, 2022. Image credit: NASA/Michael DeMocker

Move crews at NASA’s Michoud Assembly Facility lift the aft liquid oxygen tank (LOX) barrel out of the Vertical Weld Center (VWC) for its next phase of production. The aft barrel will eventually be mated with the forward barrel and the forward and aft domes to form the LOX tank, which will be used in the Space Launch System’s (SLS) Artemis IV mission. The LOX tank holds 196,000 gallons of super-cooled liquid oxygen to help fuel four RS-25 engines. The SLS core stage is made up of five unique elements: the forward skirt, liquid oxygen tank, intertank, liquid hydrogen tank, and the engine section. The liquid oxygen hardware, along with the liquid hydrogen tank will provide propellant to the four RS-25 engines to produce more than two million pounds of thrust to help launch NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit to the Moon. Together with its four RS-25 engines, the rocket’s massive 212-foot-tall core stage — the largest stage NASA has ever built — and its twin solid rocket boosters will produce 8.8 million pounds of thrust to send NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit to the Moon and, ultimately, Mars. Offering more payload mass, volume capability and energy to speed missions through space, the SLS rocket, along with NASA’s Gateway in lunar orbit, the Human Landing System, and Orion spacecraft, is part of NASA’s backbone for deep space exploration and the Artemis lunar program. No other rocket is capable of carrying astronauts in Orion around the Moon in a single mission. Photographed on Tuesday, May 10, 2022. Image credit: NASA/Michael DeMocker

Move crews at NASA’s Michoud Assembly Facility lift the aft liquid oxygen tank (LOX) barrel out of the Vertical Weld Center (VWC) for its next phase of production. The aft barrel will eventually be mated with the forward barrel and the forward and aft domes to form the LOX tank, which will be used in the Space Launch System’s (SLS) Artemis IV mission. The LOX tank holds 196,000 gallons of super-cooled liquid oxygen to help fuel four RS-25 engines. The SLS core stage is made up of five unique elements: the forward skirt, liquid oxygen tank, intertank, liquid hydrogen tank, and the engine section. The liquid oxygen hardware, along with the liquid hydrogen tank will provide propellant to the four RS-25 engines to produce more than two million pounds of thrust to help launch NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit to the Moon. Together with its four RS-25 engines, the rocket’s massive 212-foot-tall core stage — the largest stage NASA has ever built — and its twin solid rocket boosters will produce 8.8 million pounds of thrust to send NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit to the Moon and, ultimately, Mars. Offering more payload mass, volume capability and energy to speed missions through space, the SLS rocket, along with NASA’s Gateway in lunar orbit, the Human Landing System, and Orion spacecraft, is part of NASA’s backbone for deep space exploration and the Artemis lunar program. No other rocket is capable of carrying astronauts in Orion around the Moon in a single mission. Photographed on Tuesday, May 10, 2022. Image credit: NASA/Michael DeMocker

Move crews at NASA’s Michoud Assembly Facility lift the aft liquid oxygen tank (LOX) barrel out of the Vertical Weld Center (VWC) for its next phase of production. The aft barrel will eventually be mated with the forward barrel and the forward and aft domes to form the LOX tank, which will be used in the Space Launch System’s (SLS) Artemis IV mission. The LOX tank holds 196,000 gallons of super-cooled liquid oxygen to help fuel four RS-25 engines. The SLS core stage is made up of five unique elements: the forward skirt, liquid oxygen tank, intertank, liquid hydrogen tank, and the engine section. The liquid oxygen hardware, along with the liquid hydrogen tank will provide propellant to the four RS-25 engines to produce more than two million pounds of thrust to help launch NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit to the Moon. Together with its four RS-25 engines, the rocket’s massive 212-foot-tall core stage — the largest stage NASA has ever built — and its twin solid rocket boosters will produce 8.8 million pounds of thrust to send NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit to the Moon and, ultimately, Mars. Offering more payload mass, volume capability and energy to speed missions through space, the SLS rocket, along with NASA’s Gateway in lunar orbit, the Human Landing System, and Orion spacecraft, is part of NASA’s backbone for deep space exploration and the Artemis lunar program. No other rocket is capable of carrying astronauts in Orion around the Moon in a single mission. Photographed on Tuesday, May 10, 2022. Image credit: NASA/Michael DeMocker

Move crews at NASA’s Michoud Assembly Facility lift the aft liquid oxygen tank (LOX) barrel out of the Vertical Weld Center (VWC) for its next phase of production. The aft barrel will eventually be mated with the forward barrel and the forward and aft domes to form the LOX tank, which will be used in the Space Launch System’s (SLS) Artemis IV mission. The LOX tank holds 196,000 gallons of super-cooled liquid oxygen to help fuel four RS-25 engines. The SLS core stage is made up of five unique elements: the forward skirt, liquid oxygen tank, intertank, liquid hydrogen tank, and the engine section. The liquid oxygen hardware, along with the liquid hydrogen tank will provide propellant to the four RS-25 engines to produce more than two million pounds of thrust to help launch NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit to the Moon. Together with its four RS-25 engines, the rocket’s massive 212-foot-tall core stage — the largest stage NASA has ever built — and its twin solid rocket boosters will produce 8.8 million pounds of thrust to send NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit to the Moon and, ultimately, Mars. Offering more payload mass, volume capability and energy to speed missions through space, the SLS rocket, along with NASA’s Gateway in lunar orbit, the Human Landing System, and Orion spacecraft, is part of NASA’s backbone for deep space exploration and the Artemis lunar program. No other rocket is capable of carrying astronauts in Orion around the Moon in a single mission. Photographed on Tuesday, May 10, 2022. Image credit: NASA/Michael DeMocker

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

On May 24, 2022, the core stage production team moved the Space Launch System (SLS) rocket engine section for Artemis II to the core stage final integration area at NASA’s Michoud Assembly Facility in New Orleans. While there, the engine section team is completing installation of the main propulsion systems, finishing integration of the electrical and avionics systems, and preparing for functional testing of the various systems. During final integration, the team also will install remaining internal thermal protection systems and prepare to position the engine section from vertical to horizontal so that it can be joined with the rest of the core stage. The engine section is located at the bottom of the core stage and includes the rocket’s main propulsion systems that connect to the core stage’s four RS-25 engines that will help launch the Artemis II lunar mission. This fall, the engine section will be horizontally integrated with the previously-joined forward assembly and liquid hydrogen tank to complete the core stage. NASA and core stage lead contractor Boeing are building core stages for the next three Artemis missions. The 212-foot core stage with its RS-25 engines will provide more than 2 million pounds of thrust at launch. With Artemis, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

Inside the Launch Abort System Facility (LASF) at NASA’s Kennedy Space Center in Florida, workers are completing the integration of a test version of the Orion crew module with the Launch Abort System (LAS) on May 18, 2019. The test vehicle and the LAS will be used for the Orion Ascent Abort-2 (AA-2) Flight Test. AA-2 is a full-stress test of the LAS, planned for July 2. AA-2 will launch from Space Launch Complex 46, carrying a fully functional LAS and a 22,000-pound Orion test vehicle to an altitude of 31,000 feet and traveling at more than 1,000 miles an hour. The test will verify the LAS can steer the crew module and astronauts aboard to safety if an emergency occurs during ascent on the Space Launch System (SLS) rocket. NASA's Orion and Exploration Ground Systems programs, contractors Jacob's, Lockheed Martin and Northrop Grumman, in conjunction with the Air Force Space and Missile Center's Launch Operations branch and the 45th Space Wing are performing flight operations for AA-2.

Inside the Launch Abort System Facility (LASF) at NASA’s Kennedy Space Center in Florida, workers are completing the integration of a test version of the Orion crew module with the Launch Abort System (LAS) on May 18, 2019. The test vehicle and the LAS will be used for the Orion Ascent Abort-2 (AA-2) Flight Test. AA-2 is a full-stress test of the LAS, planned for July 2. AA-2 will launch from Space Launch Complex 46, carrying a fully functional LAS and a 22,000-pound Orion test vehicle to an altitude of 31,000 feet and traveling at more than 1,000 miles an hour. The test will verify the LAS can steer the crew module and astronauts aboard to safety if an emergency occurs during ascent on the Space Launch System (SLS) rocket. NASA's Orion and Exploration Ground Systems programs, contractors Jacob's, Lockheed Martin and Northrop Grumman, in conjunction with the Air Force Space and Missile Center's Launch Operations branch and the 45th Space Wing are performing flight operations for AA-2.

Inside the Launch Abort System Facility (LASF) at NASA’s Kennedy Space Center in Florida, workers are completing the integration of a test version of the Orion crew module with the Launch Abort System (LAS) on May 18, 2019. In view are the LAS attitude control motor, jettison motor and abort motor. The test vehicle and the LAS will be used for the Orion Ascent Abort-2 (AA-2) Flight Test. AA-2 is a full-stress test of the LAS, planned for July 2. AA-2 will launch from Space Launch Complex 46, carrying a fully functional LAS and a 22,000-pound Orion test vehicle to an altitude of 31,000 feet and traveling at more than 1,000 miles an hour. The test will verify the LAS can steer the crew module and astronauts aboard to safety if an emergency occurs during ascent on the Space Launch System (SLS) rocket. NASA's Orion and Exploration Ground Systems programs, contractors Jacob's, Lockheed Martin and Northrop Grumman, in conjunction with the Air Force Space and Missile Center's Launch Operations branch and the 45th Space Wing are performing flight operations for AA-2.