Active Atmosphere
Active Atmosphere
Hidden Activity
Hidden Activity
Dune Activity in Proctor Crater
Dune Activity in Proctor Crater
Volcanic Activity on Io
Volcanic Activity on Io
Saturn Active Atmosphere
Saturn Active Atmosphere
Active Volcanic Eruptions on Io
Active Volcanic Eruptions on Io
Scars on an Active World
Scars on an Active World
Active Cryovolcanic Features on Titan?
Active Cryovolcanic Features on Titan?
Evidence of Volcanic Activity on Mercury
Evidence of Volcanic Activity on Mercury
Volcanically Active Regions on Io
Volcanically Active Regions on Io
Probing Storm Activity on Jupiter
Probing Storm Activity on Jupiter
The F-15 ACTIVE in flight above the Mojave desert on April 14, 1998. The overhead shot shows the aircraft's striking red and while paint scheme/ The large forward canards are actually the tail surfaces from an F-18.
F-15 ACTIVE in flight
Artist rendering of the Soil Moisture Active Passive SMAP satellite. The width of the region scanned on Earth surface during each orbit is about 620 miles 1,000 kilometers.
Soil Moisture Active Passive Satellite
NASA Soil Moisture Active Passive SMAP spacecraft is slowly lowered into place in the Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory, Pasadena, California.
NASA Soil Moisture Active Passive SMAP Lowered into Place
NASA Soil Moisture Active Passive SMAP mission will produce high-resolution global maps of soil moisture to track water availability around our planet and guide policy decisions.
NASA Soil Moisture Active Passive SMAP Artist Concept
Infrared Map of Titan Active Regions
Infrared Map of Titan Active Regions
Simulated View for Rover Activity Planning
Simulated View for Rover Activity Planning
Geologic Evidence of Internal Activity on Europa
Geologic Evidence of Internal Activity on Europa
NASA image acquired Sept 7, 2010  Shiveluch (also spelled Sheveluch) is one of the largest and most active volcanoes on Russia’s Kamchatka Peninsula. It has been spewing ash and steam intermittently—with occasional dome collapses, pyroclastic flows, and lava flows, as well—for the past decade. Shiveluch is a stratovolcano, a steep-sloped formation of alternating layers of hardened lava, ash, and rocks thrown out by earlier eruptions. A lava dome has been growing southwest of the 3,283-meter (10,771-foot) summit.  The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite acquired this image on September 7, 2010. Brown and tan debris—perhaps ash falls, perhaps mud from lahars—covers the southern landscape of the volcano, while the hills on the northern side remain covered in snow and ice.  The Kamchatkan Volcanic Eruption Response Team (KVERT) reported that seismic activity at Shiveluch was "above background levels" from September 3-10. Ash plumes rose to an altitude of 6.5 kilometers (21,300 feet) on September 3-4, and gas-and-ash plumes were reported on September 7, when this image was acquired.  According to the Smithsonian Institution's volcano program, at least 60 large eruptions of Shiveluch have occurred during the current Holocene Epoch of geological history. Intermittent explosive eruptions began in the 1990s, and the largest historical eruptions from Shiveluch occurred in 1854 and 1964.  NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Mike Carlowicz. Instrument: EO-1 - ALI  Credit:  NASA Earth Observatory  NASA Goddard Space Flight Center  contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission.  Follow us on Twitter  Join us on Facebook
Activity at Shiveluch Volcano
F-15B ACTIVE in flight
F-15B ACTIVE in flight
F-15B ACTIVE in flight
F-15B ACTIVE in flight
Helicopter active flow control tests in the 14X22 subsonic wind tunnel. Photos include preparation of the model before testing and the control room where testing is monitored and data collected
Helicopter Active Flow Control Tests in the 14x22 Subsonic Wind
Helicopter active flow control tests in the 14X22 subsonic wind tunnel. Photos include preparation of the model before testing and the control room where testing is monitored and data collected
Helicopter Active Flow Control Tests in the 14x22 Subsonic Wind
Helicopter active flow control tests in the 14X22 subsonic wind tunnel. Photos include preparation of the model before testing and the control room where testing is monitored and data collected
Helicopter Active Flow Control Tests in the 14x22 Subsonic Wind
Helicopter active flow control tests in the 14X22 subsonic wind tunnel. Photos include preparation of the model before testing and the control room where testing is monitored and data collected
Helicopter Active Flow Control Tests in the 14x22 Subsonic Wind
Helicopter active flow control tests in the 14X22 subsonic wind tunnel. Photos include preparation of the model before testing and the control room where testing is monitored and data collected
Helicopter Active Flow Control Tests in the 14x22 Subsonic Wind
Helicopter active flow control tests in the 14X22 subsonic wind tunnel. Photos include preparation of the model before testing and the control room where testing is monitored and data collected
Helicopter Active Flow Control Tests in the 14x22 Subsonic Wind
Helicopter active flow control tests in the 14X22 subsonic wind tunnel. Photos include preparation of the model before testing and the control room where testing is monitored and data collected
Helicopter Active Flow Control Tests in the 14x22 Subsonic Wind
Amazing the things you can 'see' from space, if you just know how to look ... Satellite data show that during the Northern Hemisphere's growing season, the U.S. Midwest boasts more photosynthetic activity than any other spot on Earth.  The magnitude of fluorescence portrayed in this visualization prompted researchers to take a closer look at the productivity of the U.S. Corn Belt. The glow represents fluorescence measured from land plants in early July, over a period from 2007 to 2011.  Credit: NASA's Goddard Space Flight Center  More here: <a href="http://go.nasa.gov/1jstros" rel="nofollow">go.nasa.gov/1jstros</a>  <b><a href="http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html" rel="nofollow">NASA image use policy.</a></b>   <b><a href="http://www.nasa.gov/centers/goddard/home/index.html" rel="nofollow">NASA Goddard Space Flight Center</a></b> enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.   <b>Follow us on <a href="http://twitter.com/NASAGoddardPix" rel="nofollow">Twitter</a></b>   <b>Like us on <a href="http://www.facebook.com/pages/Greenbelt-MD/NASA-Goddard/395013845897?ref=tsd" rel="nofollow">Facebook</a></b>   <b>Find us on <a href="http://instagram.com/nasagoddard?vm=grid" rel="nofollow">Instagram</a></b>
Photosynthetic Activity in US Midwest
The F-15 ACTIVE touches down on the Edwards runway following its April 14, 1998 flight. The nose is high while the canards have their rear edge raised. the aircraft's speed brake, located on the top of the aircraft behind the canopy, is also raised.
F-15 ACTIVE touches down on Edwards AFB runway
S66-38515 (5 June 1966) --- Astronaut Eugene A. Cernan, pilot of the Gemini-9A spaceflight, is pictured outside of the spacecraft during his extravehicular activity (EVA). Photo credit: NASA
GT-9A - EVA - EXTRAVEHICULAR ACTIVITY
A new active region appeared on June 19th, quickly growing in size over two days (June 20-22, 2018). Active regions are areas of enhanced magnetic activity on the Sun's surface, generating the huge loops and dynamic surges observed here. Charged particles spinning along the field lines above the active region are illuminated in this wavelength of extreme ultraviolet light. The superimposed Earth icon gives a sense of just how large these loops are.  Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22582
Rambunctious Active Region
Camaxtli Patera, An Active Volcanic Center on Io
Camaxtli Patera, An Active Volcanic Center on Io
Signs of Eolian and Periglacial Activity at Vastitas Borealis
Signs of Eolian and Periglacial Activity at Vastitas Borealis
Snapshot of Southern Spring Dust Storm Activity
Snapshot of Southern Spring Dust Storm Activity
Active Processes: Bright Streaks and Dark Fans
Active Processes: Bright Streaks and Dark Fans
Lack of Visible Change Around Active Hotspots on Io
Lack of Visible Change Around Active Hotspots on Io
Ongoing Geologic Activity at Prometheus Volcano, Io
Ongoing Geologic Activity at Prometheus Volcano, Io
Color Mosaic and Active Volcanic Plumes on Io
Color Mosaic and Active Volcanic Plumes on Io
Sequence Showing Active Volcanic Plumes on Io
Sequence Showing Active Volcanic Plumes on Io
This close-up image of the sun presents an active region in profile as it rotated out of view. We can observe both the bright arching field lines and smaller pieces of darker matter in their midst being pulled back and forth just above the Sun's surface over about 36 hours (July 20-22, 2011). Both of these physical responses were caused by strong, tangled magnetic forces that are constantly evolving and reorganizing within the active region. Other active regions can be seen in the foreground as well. The image and movie were taken in extreme ultraviolet light of ionized iron heated to one million degrees.  To view a hd video of this event go here: <a href="http://www.flickr.com/photos/gsfc/6006013038">www.flickr.com/photos/gsfc/6006013038</a>  Credit: NASA/GSFC/SDO  <b><a href="http://www.nasa.gov/centers/goddard/home/index.html" rel="nofollow">NASA Goddard Space Flight Center</a></b> enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.  <b>Follow us on <a href="http://twitter.com/NASA_GoddardPix" rel="nofollow">Twitter</a></b>  <b>Like us on <a href="http://www.facebook.com/pages/Greenbelt-MD/NASA-Goddard/395013845897?ref=tsd" rel="nofollow">Facebook</a></b>  <b>Find us on <a href="http://web.stagram.com/n/nasagoddard/?vm=grid" rel="nofollow">Instagram</a></b>
Tangled up Active Region
An active region that was rotating out of view off the sun's western limb, displayed a dazzling variety of dozens of spurts and eruptions in about 2.5 days (Apr. 19-21, 2014). The frames, taken in extreme ultraviolet light, show ionized Helium not far above the Sun's surface. All of the activity near this region was caused by intense magnetic forces in a powerful struggling with each other.   Credit: NASA/Goddard/SDO  <b><a href="http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html" rel="nofollow">NASA image use policy.</a></b>  <b><a href="http://www.nasa.gov/centers/goddard/home/index.html" rel="nofollow">NASA Goddard Space Flight Center</a></b> enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.  <b>Follow us on <a href="http://twitter.com/NASAGoddardPix" rel="nofollow">Twitter</a></b>  <b>Like us on <a href="http://www.facebook.com/pages/Greenbelt-MD/NASA-Goddard/395013845897?ref=tsd" rel="nofollow">Facebook</a></b>  <b>Find us on <a href="http://instagram.com/nasagoddard?vm=grid" rel="nofollow">Instagram</a></b>
Spasmodic Active Region
A test rocket is launched the night of Feb. 17 from the Poker Flat Research Range in Alaska.  Test rockets are launched as part of the countdown to test out the radar tracking systems. NASA is launching five sounding rockets from the Poker Range into active auroras to explore the Earth's magnetic environment and its impact on Earth’s upper atmosphere and ionosphere. The launch window for the four remaining rockets runs through March 3.    Credit: NASA/Terry Zaperach  <b><a href="http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html" rel="nofollow">NASA image use policy.</a></b>  <b><a href="http://www.nasa.gov/centers/goddard/home/index.html" rel="nofollow">NASA Goddard Space Flight Center</a></b> enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.  <b>Follow us on <a href="http://twitter.com/NASAGoddardPix" rel="nofollow">Twitter</a></b>  <b>Like us on <a href="http://www.facebook.com/pages/Greenbelt-MD/NASA-Goddard/395013845897?ref=tsd" rel="nofollow">Facebook</a></b>  <b>Find us on <a href="http://instagrid.me/nasagoddard/?vm=grid" rel="nofollow">Instagram</a></b>
NASA Launches Rocket Into Active Auroras
On March 7, 2013 the Terra satellite passed over eastern Russia, allowing the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard to capture volcanic activity at Shiveluch and Plosky Tolbachik, on the Kamchatka Peninsula, in eastern Russia. This image was captured at 0050 UTC.   Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team  <b><a href="http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html" rel="nofollow">NASA image use policy.</a></b>  <b><a href="http://www.nasa.gov/centers/goddard/home/index.html" rel="nofollow">NASA Goddard Space Flight Center</a></b> enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.  <b>Follow us on <a href="http://twitter.com/NASA_GoddardPix" rel="nofollow">Twitter</a></b>  <b>Like us on <a href="http://www.facebook.com/pages/Greenbelt-MD/NASA-Goddard/395013845897?ref=tsd" rel="nofollow">Facebook</a></b>  <b>Find us on <a href="http://instagram.com/nasagoddard?vm=grid" rel="nofollow">Instagram</a></b>
Volcanic Activity at Shiveluch and Plosky Tolbachik
STS029-04-029 (13-18 March 1989) --- Astronaut Michael L. Coats appears to like the status of the STS-29 flight as he offers a big smile from the commander's station on the flight deck. He takes a momentary break from updating the crew activity plan (CAP) to pose for the photo.    This photographic frame was among NASA's third STS-29 photo release. Monday, March 20, 1989. Crew members were astronauts Michael L. Coats, John E. Blaha, James F. Buchli, Robert C. Springer and James P. Bagian. Photo credit: NASA
STS-29 crew activities
This image acquired by NASA Terra spacecraft is of Mt. Etna, Europe most active volcano, as it continued its latest eruptive activity with a new lava flow from the recently formed southeast crater.
Latest Activity at Europe Most Active Volcano Captured by NASA Spacecraft
ICESat-2 Friends and Family Day. Tours and activities in Building 7 and 28.
ICESat-2 Friends and Family Day. Tours and activities in Buildin
ICESat-2 Friends and Family Day. Tours and activities in Building 7 and 28.
ICESat-2 Friends and Family Day. Tours and activities in Buildin
ICESat-2 Friends and Family Day. Tours and activities in Building 7 and 28.
ICESat-2 Friends and Family Day. Tours and activities in Buildin
ICESat-2 Friends and Family Day. Tours and activities in Building 7 and 28.
ICESat-2 Friends and Family Day. Tours and activities in Buildin
Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
Soil Moisture Active Passive (SMAP) Media Briefing
Brad Doorn, SMAP applications lead, Science Mission Directorate’s Applied Sciences Program at NASA Headquarters speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
Soil Moisture Active Passive (SMAP) Media Briefing
Christine Bonniksen, SMAP program executive with the Science Mission Directorate’s Earth Science Division at NASA Headquarters speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
Soil Moisture Active Passive (SMAP) Media Briefing
Kent Kellogg, SMAP project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, CA, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
Soil Moisture Active Passive (SMAP) Media Briefing
On April 28, 2014, NASA Terra spacecraft spotted signs of activity at Ubinas volcano in the Peruvian Andes. The appearance of a new lava dome in March 2014 and frequent ash emissions are signs of increasing activity at this volcano.
Ubinas Volcano Activity in Peruvian Andes
The only active region observed this week appeared on Dec. 5, 2018 and grew into an average size display of dynamic activity (Dec. 6-7, 2018). As viewed in a wavelength of extreme ultraviolet light, the region presented numerous magnetic loops of charged particles, rapidly changing their shapes and directions. As the sun is approaching its minimum level of activity in its 11 year solar cycle, we expect to see fewer and fewer active regions for quite a while. However, this active region is in the southern hemisphere of the Sun and has the North magnetic pole in the lead, so it is a sunspot of Solar Cycle 24.  Movies available at https://photojournal.jpl.nasa.gov/catalog/PIA21211
Solar Active Region's Cameo Appearance
On Jan. 20, 2017, NASA Solar Dynamics Observatory captured a small area of the sun highlighted three active region. Over half a day this active region sent dark swirls of plasma and bright magnetic arches twisting and turning above it. All the activity in the three areas was driven by competing magnetic forces. The dynamic action was observed in a wavelength of extreme ultraviolet light.   Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA11703
Gyrating Active Region
The sun featured just one, rather small active region over the past few days, but it developed rapidly and sported a lot of magnetic activity in just one day (Apr. 11-12, 2018). The activity was observed in a wavelength of extreme ultraviolet light. The loops and twisting arches above it are evidence of magnetic forces tangling with each other. The video clip was produced using Helioviewer software.  Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA06676
Small but Dynamic Active Region
STS061-95-028 (6 Dec 1993) --- Astronaut Kathryn C. Thornton, on the end of the Space Shuttle Endeavour's Remote Manipulator System (RMS) arm, hovers over equipment associated with servicing chores on the Hubble Space Telescope (HST) during the second extravehicular activity (EVA) on the eleven-day mission.  Astronauts Thornton and Thomas D. Akers changed out the solar array panels during this EVA.
Astronaut Kathryn Thornton during second HST extravehicular activity
An active region just rotating into view gave us a perfect view of the tussle of magnetic field lines above it (Oct. 10-11, 2016). The particles spiraling along the magnetic field lines become visible in extreme ultraviolet light, helping us to see the struggle going on. There were no eruptions during this period, although active regions are usually the source for solar storms. The video clip covers just one day's worth of activity.  Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21109
Agitated Active Region
Fallon Nettles (left), an Astro Camp counselor at NASA's John C. Stennis Space Center, assists a young fan attending the University of Southern Mississippi football game in Hattiesburg, Miss., on Oct. 17 in launching a balloon 'rocket.' Prior to the game, Stennis Space Center hosted hands-on activities and exhibits for families as part of its first-ever Space Day at USM. The activities were versions of those featured in the daylong and weeklong Astro Camp sessions sponsored by Stennis throughout each year. Stennis Space Center is located in nearby Hancock County and is the nation's premier rocket engine testing facility. The USM activities were part of Stennis' ongoing effort to educate people about the NASA mission and to introduce children and young people to space and space exploration.
Stennis hosts Space Day activities at USM
Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, center, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
Soil Moisture Active Passive (SMAP) Media Briefing
The radar measurements made by NASA Soil Moisture Active Passive SMAP observatory are sensitive to whether land surfaces are frozen or thawed.
NASA SMAP Images Show Progression of Spring Thaw in Northern Hemisphere
Mt. Etna, Sicily, Italy, is Europe most active volcano. In mid-May 2016, Mt. Etna put on a display of lava fountaining, ash clouds and lava flows. Three of the four summit craters were active. NASA Terra spacecraft acquired this image on May 26, 2016.
Activity at Europe Most Active Volcano Eyed by NASA Spacecraft
Several bright bands of plasma connect from one active region to another, even though they are tens of thousands of miles away from each other (May 17-18, 2017). Active regions are, by their nature, strong magnetic areas with north and south poles. The plasma consists of charged particles that stream along the magnetic field lines between these two regions. These connecting lines are clearly visible in this wavelength of extreme ultraviolet light. Other loops and strands of bright plasma can be seen rising up and out of smaller active regions as well. The video covers about one day's worth of activity.  Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21638
Active Regions' Magnetic Connection
NASA image acquired December 4, 2010  After a respite of less than a month, Klyuchevskaya Volcano resumed erupting in late November 2010. The Global Volcanism Program reported several ash plumes that rose up to 7.9 kilometers (26,000 feet) above sea level from November 25–29. According to the Kamchatka Volcanic Eruption Response Team (KVERT) seismicity was “slightly above background levels” on November 26th and 27th, and they reported observations of strombolian activity on December 1st and 2nd.  A plume of ash, steam, and other volcanic gases streamed from Klyuchevskaya on December 4, 2010, visible in this natural-color image acquired by the Advanced Land Imager (ALI) aboard the Earth Observing-1 (EO-1) satellite. In the large image, a much smaller plume is visible above neighboring Bezymianny Volcano.  NASA Earth Observatory image by Jesse Allen &amp; Robert Simmon, using ALI data from the NASA EO-1 team. Caption by Robert Simmon.  Instrument:  EO-1 - ALI  Credit: <b><a href="http://www.earthobservatory.nasa.gov/" rel="nofollow"> NASA Earth Observatory</a></b>  <b><a href="http://www.nasa.gov/centers/goddard/home/index.html" rel="nofollow">NASA Goddard Space Flight Center</a></b> enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.  <b>Follow us on <a href="http://twitter.com/NASA_GoddardPix" rel="nofollow">Twitter</a></b>  <b>Join us on <a href="http://www.facebook.com/pages/Greenbelt-MD/NASA-Goddard/395013845897?ref=tsd" rel="nofollow">Facebook</a></b>
Activity at Klyuchevskaya Volcano Resumes
As a pair of active regions began to rotate into view, their towering magnetic field lines above them bloomed into a dazzling display of twisting arches (Oct. 27-28, 2015). Some of the lines reached over and connected with the neighboring active region. Active regions are usually the source of solar storms. The images were taken in a wavelength of extreme ultraviolet light.  http://photojournal.jpl.nasa.gov/catalog/PIA20048
Active Regions Blossoming
F-15B ACTIVE in flight over lakebed
F-15B ACTIVE in flight over lakebed
The Sun's rotation brought a new active region into view, revealing the dynamic arches and twisting streams of its magnetic field (Oct. 10-11, 2018). A new active region is becoming more of a rare sight, as the Sun is currently approaching solar minimum -- the point of the 11-year solar cycle when activity is most reduced. The video clip, showing images taken in a wavelength of extreme ultraviolet light covers 33 hours and consists of over 500 frames (i.e., one frame selected every 4 minutes).  Animations are available at https://photojournal.jpl.nasa.gov/catalog/PIA18139
Sole Active Region in Profile
Young visitors to NASA's John C. Stennis Space Center prepare to launch 'stomp rockets' during STEM-Ulate to Innovate activities at the facility July 13. The NASA Foundations of Influence, Relationships, Success and Teamwork (FIRST) Team sponsored STEM-Ulate to Innovate for more than 100 children ages 9-11. Children from area Boys & Girls Clubs participated in hands-on activities, presentations and demonstrations by professional engineers, all designed to promote the relevance of science, technology, engineering and mathematics (STEM).
NASA team hosts STEM-Ulate actvities
S69-59525 (19 Nov. 1969) --- Overall view of activity in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, during the Apollo 12 lunar landing mission. When this picture was made the first Apollo 12 extravehicular activity (EVA) was being televised from the surface of the moon.  Photo credit: NASA
APOLLO XIII CREW - MISSION OPERATIONS CONTROL ROOM (MOCR) - APOLLO XII - LUNAR EXTRAVEHICULAR ACTIVITY (EVA) - MSC
Artist concept of NASA STEREO-A Spacecraft Observing a very active Sun.
NASA STEREO-A Spacecraft Observing a very Active Sun Artist Concept
Amirani-Maui: Longest Known Active Lava Flow in the Solar System
Amirani-Maui: Longest Known Active Lava Flow in the Solar System
A pair of relatively small (but frenetic) active regions rotated into view, spouting off numerous small flares and sweeping loops of plasma (May 31-June 2, 2017). At first, only the one active region was observed, but mid-way though the video clip a second one behind the first can be picked out. The dynamic regions were easily the most remarkable areas on the sun during this 42-hour period. The images were taken in a wavelength of extreme ultraviolet light.  Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21756
Energized Active Regions
A close-up view of one day in the life of a rather small active region shows the agitation and dynamism of its magnetic field (Dec. 21, 2016). This wavelength of extreme ultraviolet light reveals particles as they spin along the cascading arches of magnetic field lines above the active region. Some darker plasma rises up and spins around at the edge of the sun near the end of the video clip also being pulled by unseen magnetic forces.  Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA15032
Jumpy Active Region
Joseph Fanelli, at the Integrated Communications Officer console, monitors the televised activity of Astronauts Story Musgrave and Jeffrey A. Hoffman. The vetern astronauts were performing the first extravehicular activity (EVA-1) of the STS-61 Hubble Space Telescope (HST) servicing mission.
Mission control activity during STS-61 EVA-1
S66-01122 (January 1966) --- Artist concept of the Gemini-4 EVA coverlayer configuration.
CUTAWAY - GEMINI-TITAN (GT) SUIT - EXTRAVEHICULAR ACTIVITY (EVA) - MSC
Gully and defrosting activity have been visible here along the edge of a dune field, along with blocks of frost. Observations from NASA Mars Reconnaissance Orbiter of the same area help check for repeat activity, as well as measuring those meter-scale blocks that we've seen prior.  In this case, we want to compare any possible changes with a previous observation, which we acquired in 2011. We've also seen images where carbon dioxide frost was the driving process in creating new gullies, so we know their formation is occurring to this day. Tracking for changes, especially when we look at the 1-kilometer enhanced color swath, can help us find more.  http://photojournal.jpl.nasa.gov/catalog/PIA19843
Active High-Latitude Dune-Gullies
S93-37890 (October 1993) --- Astronaut Jerry M. Linenger, STS-64 mission specialist, is assisted by Steve Voyles and Kari Rueter of Boeing Aerospace prior to participating in a rehearsal for a contingency extravehicular activity (EVA). Crewmates Mark C. Lee and Carl J. Meade have used the nearby 25-feet deep pool to rehearse a spacewalk designed to test and evaluate new EVA equipment. Photo credit: NASA or National Aeronautics and Space Administration
STS-64 extravehicular activity training view
S93-37899 (October 1993) --- Astronaut Jerry M. Linenger, STS-64 mission specialist, is assisted by Steve Voyles and Kari Rueter of Boeing Aerospace prior to participating in a rehearsal for a contingency extravehicular activity (EVA). Minutes later, Linenger was submerged in the 25-feet-deep pool in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Photo credit: NASA or National Aeronautics and Space Administration
STS-64 extravehicular activity training view
S93-26918 (8 Sept. 1994) --- Scott Bleisath, an extravehicular activity (EVA) engineer, demonstrates the hand control module for the Simplified Aid for EVA Rescue (SAFER) system making its first flight on the scheduled September STS-64 mission. Astronauts Mark C. Lee and Carl J. Meade are the spacewalkers assigned to test the system in space.  Unidentified technicians and engineers look on. Photo credit: NASA or National Aeronautics and Space Administration
STS-64 extravehicular activity (EVA) hardware view
Solar activity and erupting prominences. EIT 304A (Jan. 8-10, 2000)  Credit: NASA/GSFC/SOHO/ESA  To learn more go to the SOHO website:  <a href="http://sohowww.nascom.nasa.gov/home.html" rel="nofollow">sohowww.nascom.nasa.gov/home.html</a>  To learn more about NASA's Sun Earth Day go here:  <a href="http://sunearthday.nasa.gov/2010/index.php" rel="nofollow">sunearthday.nasa.gov/2010/index.php</a>
Solar activity and erupting prominences [HD Video]
S93-26920 (8 Sept. 1994) --- Scott Bleisath, an extravehicular activity (EVA) engineer, demonstrates the hand control module for the Simplified Aid for EVA Rescue (SAFER) system making its first flight on the scheduled September STS-64 mission. Astronauts Mark C. Lee and Carl J. Meade are the spacewalkers assigned to test the system in space. Photo credit: NASA or National Aeronautics and Space Administration
STS-64 extravehicular activity (EVA) hardware view
NASA NEOWISE spotted Comet C/2013 UQ4 Catalina, appearing to be a highly active comet one day past perihelion on July 7, 2014.
NEOWISE Spies Activity on Comet Catalina
SCI2017_0007: Artist illustration of the thick ring of dust that can obscure the energetic processes that occur near the supermassive black hole of an active galactic nuclei. The SOFIA studies suggest that the dust distribution is about 30 percent smaller than previously thought. Credit: NASA/SOFIA/Lynette Cook
Active Galactic Nucleus
A good-sized active region with bright, towering arches began to rotate into view (Apr. 18-19, 2018). The arches consist of charged particles spiraling along magnetic field lines revealed in this wavelength of extreme ultraviolet light. They rise up above the sun's surface many times the size of Earth. The video covers just 16 hours of activity. We will keep our eyes on this region to see if it has the kind of dynamism to produce solar storms.  Videos are available at https://photojournal.jpl.nasa.gov/catalog/PIA22430
Active Region Coming Around the Bend
Herschel Space Observatory has shown that galaxies with the most powerful, active, supermassive black holes at their cores produce fewer stars than galaxies with less active black holes in this artist concept.
Artist Concept: Active Black Hole Squashes Star Formation
Flight controller Susan P. Rainwater observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-looking Space Shuttle Endeavour. Rainwater's EVA console was one of Mission Control's busiest during this eleven-day Hubble Space Telescope (HST) servicing mission in Earth orbit.
Mission control activity during STS-61 EVA
Nili Patera is one of the most active dune fields on Mars. Continuously monitored by the HiRise instrument onboard NASA Mars Reconnaissance Orbiter, a new image is acquired about every six weeks.
The Active Dunes of Nili Patera
Numerous arches of magnetic field lines danced and swayed above a large active region over about a 30-hour period (July 17-18, 2017). We can also see the magnetic field lines from the large active region reached out and connected with a smaller active region. Those linked lines then strengthened (become brighter), but soon began to develop a kink in them and rather swiftly faded from view. All of this activity is driven by strong magnetic forces associated with the active regions. The images were taken in a wavelength of extreme ultraviolet light.  https://photojournal.jpl.nasa.gov/catalog/PIA21838
Kinked Loop Stretching Between Two Active Regions
This image, created at the Jet Propulsion Laboratory JPL, shows the Soil Moisture Active Passive SMAP mission, specifically depicting how the scanning antenna will fly in space and the swath coverage over the Earth.
SMAP Flys over Earth Artist Concept
The sun sets behind Space Launch Complex 2, Vandenberg Air Force Base, California, where NASA Soil Moisture Active Passive SMAP mission satellite is being prepared for liftoff. Launch is scheduled for Jan. 29.
Sunset at Vandenberg
In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA Soil Moisture Active Passive SMAP spacecraft for its move to the launch pad.
SMAP Gets Ready to Move
These maps of global soil moisture were created using data from the radiometer instrument on NASA Soil Moisture Active Passive SMAP observatory. Evident are regions of increased soil moisture and flooding during April, 2015.
SMAP Radiometer Captures Views of Global Soil Moisture
NASA Soil Moisture Active Passive SMAP satellite is transported across Vandenberg Air Force Base in California to Space Launch Complex 2, where it will be mated to a Delta II rocket for launch, targeted for Jan. 29.
Satellite in a Can
At Space Launch Complex 2 on Vandenberg Air Force Base in California, NASA Soil Moisture Active Passive SMAP mission satellite is lifted up the side of a mobile service tower for mating to its Delta II rocket.
Going Up
iss056e097010 (7/17/2018) --- Photographic documentation of Active Tissue Equivalent Dosimeter during deployment aboard the International Space Station (ISS). The Active Tissue Equivalent Dosimeter investigation uses an Active Tissue Equivalent Dosimeter aboard the International Space Station to collect data on crew radiation exposure and to characterize the space radiation environment.
Active Tissue Equivalent Dosimeter
Over the course of just one day a tiny active region grew to became almost as large as its many-days-old neighbor (Aug. 23-24, 2018). Active regions, which are areas of intense magnetism, appear brighter in wavelengths of extreme ultraviolet light and are often the source of solar storms. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22680
New Active Region Grows Up
This graphic shows the general activities the team behind NASA's Ingenuity Mars Helicopter hopes to accomplish on a given test flight on the Red Planet. The helicopter will have 31 Earth days (30 sols, or Martian days) for its test flight program.  https://photojournal.jpl.nasa.gov/catalog/PIA24496
Ingenuity's Test Flight Activities (Illustration)
NASA's Solar Dynamics Observatory (SDO) zoomed in to watch close-up the dynamics of this single active region on the sun over a two-day period (July 14-16, 2018). The loops SDO observed in extreme ultraviolet light are illuminated by charged particles spinning along the magnetic field lines above an active region. Active regions are magnetically intense areas that are pushed up to the surface of the sun from below. These regions are often the sources of large eruptions that cause solar storms, though no large eruptions seem to have occurred during this period. To give a sense of scale, these loops are rising up many times the diameter of Earth.  Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22645
Detailed Loops Above an Active Region