
In the Space Station Processing Facility, the S3/S4 integrated truss segment is on display for the media. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station.

At a media showcase in the Space Station Processing Facility, reporters and photographers get a close look at the S3/S4 integrated truss segment. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station.

In the Space Station Processing Facility, photographers take advantage of a media showcase to get photos of the S3/S4 integrated truss segment. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station.

Back dropped by a cloudless blue sky, Space Shuttle Endeavor stands ready for launch after the rollback of the Rotating Service Structure, at left. The orbiter launched that night carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electric system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

This video still depicts the recently deployed starboard and port solar arrays towering over the International Space Station (ISS). The video was recorded on STS-97's 65th orbit. Delivery, assembly, and activation of the solar arrays was the main mission objective of STS-97. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics, and will provide the power necessary for the first ISS crews to live and work in the U.S. segment. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper talks to workers in the Space Station Processing Facility. She and other crew members are at KSC for hardware familiarization. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

In this image, planet Earth, some 235 statute miles away, forms the back drop for this photo of STS-97 astronaut and mission specialist Joseph R. Tanner, taken during the third of three space walks. The mission's goal was to perform the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

S119-E-006616 (18 March 2009) --- The International Space Station’s starboard truss is featured in this image photographed by a STS-119 crewmember while Space Shuttle Discovery is docked with the station.

ISS040-E-123162 (2 Sept. 2014) --- A portion of the Russian segment of the International Space Station is featured in this image photographed by an Expedition 40 crew member onboard the station. A blue and white part of Earth and the blackness of space provide the backdrop for the scene.

ISS040-E-123158 (2 Sept. 2014) --- A portion of the Russian segment of the International Space Station is featured in this image photographed by an Expedition 40 crew member onboard the station. A blue and white part of Earth and the blackness of space provide the backdrop for the scene.

KENNEDY SPACE CENTER, FLA. - In a brief ceremony in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, turns over the “key” for the starboard truss segment S3/S4 to Scott Gahring, ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117.

ISS018-E-040963 (18 March 2009) --- This scene of the Space Shuttle Discovery parked at the International Space Station and the presence of the S6 truss are a sign that the home improvement project is being renewed aboard the orbital outpost. The photo was taken by one of the station crewmembers inside the complex.

KENNEDY SPACE CENTER, FLA. -- Suspended by an overhead crane in the Space Station Processing Facility, the International Space Station’s P4 truss moves toward a workstand. Below and behind it on the floor is the Multi-Purpose Logistics Module Raffaello, another segment of the Space Station. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. -- Workers adjust connection of the port-side P3 truss on its workstand in the Operations and Checkout Building. The truss is a segment of the International Space Station (ISS), the second port truss segment, that will be attached to the first port truss segment (P1). The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis.

KENNEDY SPACE CENTER, FLA. -- At Kennedy Space Center's Shuttle Landing Facility, the cargo of NASA's Super Guppy aircraft begins rolling out onto a payload transporter. The cargo is a P3 port-side truss, a segment of the International Space Station (ISS). The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1). The P3 truss will be taken to the Operations and Checkout Building.

KENNEDY SPACE CENTER, FLA. -- Suspended by an overhead crane in the Space Station Processing Facility, the International Space Station’s P4 truss moves toward a workstand. Below and behind it on the floor is the Multi-Purpose Logistics Module Raffaello, another segment of the Space Station. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

With its cargo off-loaded (background), the nose cone of the Super Guppy aircraft is closed. The cargo is a P3 port-side truss, a segment of the International Space Station (ISS). The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1). The P3 truss will be taken to the Operations and Checkout Building.

KENNEDY SPACE CENTER, FLA. -- The S1 Integrated Truss Structure is lowered into the payload canister for transport to Atlantis. The first starboard truss segment, the S1 will be attached to the Central truss segment, the S0 Truss, on the International Space Station during mission STS-112. Atlantis is scheduled to launch no earlier than Oct. 2.

KENNEDY SPACE CENTER, FLA. -- Inside the Operations and Checkout Building, overhead cranes lift another segment of the International Space Station (ISS), the port-side P3 truss, from its shipping container. The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1).

KENNEDY SPACE CENTER, FLA. -- Inside the Operations and Checkout Building, cranes lift the top of the shipping container containing the port-side P3 truss, a segment of the International Space Station (ISS). The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1).

KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building oversee the movement of a segment of the International Space Station (ISS), the port-side P3 truss, onto a workstand. The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1).

KENNEDY SPACE CENTER, FLA. -- Inside the Operations and Checkout Building, overhead cranes move a segment of the International Space Station (ISS), the port-side P3 truss, toward a workstand. The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1).

KENNEDY SPACE CENTER, FLA. -- Workers secure the P3 truss on the transporter for the trip to the Operations and Checkout Building. The second port-side truss is a segment of the International Space Station (ISS), scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. P3 will be attached to the first port truss segment (P1).

Workers in the Space Station Processing Facility watch the Passive Common Berthing Mechanism (PCBM) lifted high to move it over to the Z1 integrated truss structure at right. It will be mated to the Z1 truss, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (left) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Joseph Tanner is dressed in protective gear to enter the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialists Heidemarie Stefanyshyn-Piper (left) and Joseph Tanner (center) get ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper (left) gets ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (center) and Heidemarie Stefanyshyn-Piper (right) look at the inside of the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility, technicians prepare the P1 Truss Segment to be hooked to the overhead crane and moved toward the payload canister. The P1 truss is the primary payload for Mission STS-113. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39A, the P1 Truss Segment is lifted to the level of the Payload Changeout Room. The P1 truss is the primary payload for Mission STS-113 to the International Space Station. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, photographers take advantage of a media showcase to get photos of the S3/S4 integrated truss segment. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station. Photo credit: NASA/George Shelton

At a media showcase in the Space Station Processing Facility, reporters and photographers get a close look at the S3/S4 integrated truss segment. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station.

KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility, technicians use an overhead crane to lower the P1 Truss Segment into the payload canister. The P1 truss is the primary payload for Mission STS-113. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the S3/S4 integrated truss segment is on display for the media. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station. Photo credit: NASA/George Shelton

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39A, the P1 Truss Segment arrives at the pad for transfer into the Payload Changeout Room. The P1 truss is the primary payload for Mission STS-113 to the International Space Station. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility, the P1 Truss Segment is moved by overhead crane through the highbay toward the payload canister. The P1 truss is the primary payload for Mission STS-113. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39A, the P1 Truss Segment is lifted to the level of the Payload Changeout Room. The P1 truss is the primary payload for Mission STS-113 to the International Space Station. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39A, the P1 Truss Segment arrives at the pad for transfer into the Payload Changeout Room. The P1 truss is the primary payload for Mission STS-113 to the International Space Station. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

KENNEDY SPACE CENTER, FLA. -- At a media showcase in the Space Station Processing Facility, reporters and photographers get a close look at the S3/S4 integrated truss segment. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station. Photo credit: NASA/George Shelton

KENNEDY SPACE CENTER, FLA. -- At a media showcase in the Space Station Processing Facility, reporters and photographers get a close look at the S3/S4 integrated truss segment. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station. Photo credit: NASA/George Shelton

KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility, the P1 Truss Segment is lowered into the payload canister. The P1 truss is the primary payload for Mission STS-113. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39A, technicians prepare to move the P1 truss segment from the payload canister into the Payload Changeout Room. The P1 truss is the primary payload for Mission STS-113 to the International Space Station. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39A, the P1 Truss Segment arrives at the Payload Changeout Room in preparation for installation into Endeavour's payload bay. The P1 truss is the primary payload for Mission STS-113 to the International Space Station. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility, technicians use an overhead crane to lower the P1 Truss Segment into the payload canister. The P1 truss is the primary payload for Mission STS-113. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

KENNEDY SPACE CENTER, FLA. - STS-116 Mission Specialist Christer Fuglesang (right) (European Space Agency) practices using a tool that is part of the equipment for the mission. He joined STS-118 crew members for the familiarization activities in the Space Station Processing Facility. The STS-116 mission will deliver the third port truss segment, the P5 Truss, to attach to the second port truss segment, the P3/P4 Truss. The STS-118 mission will be delivering and installing the third starboard truss segment, the ITS S5, to the International Space Station, and carry a SPACEHAB Single Cargo Module with supplies and equipment. Launch dates for both missions are under review.

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, workers get ready to lower the International Space Station’s P4 truss onto a workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, an overhead crane moves the P4 truss to a workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field on the International Space Station, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

KENNEDY SPACE CENTER, FLA. -- Rolling out of NASA's Super Guppy aircraft aboard a payload transporter is a port-side P3 truss, a component for the International Space Station (ISS). The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1). The P3 truss will be taken to the Operations and Checkout Building.

Workers in the Space Station Processing Facility watch as cables and a crane lift the Passive Common Berthing Mechanism (PCBM) before mating it to the Z1 integrated truss structure, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, an overhead crane moves the P4 truss to a workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field on the International Space Station, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy aircraft arrives at Kennedy Space Center's Shuttle Landing Facility. The plane carries a component for the International Space Station (ISS), the port-side P3 truss. The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1). The P3 truss will be taken to the Operations and Checkout Building

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the S5 truss segment for the International Space Station passes in front of the mate/demate device as it begins its move to the Space Station Processing Facility. There it will be fit checked for a Photo-Voltaic Radiator Grapple Fixture. It will also undergo a fit check to a truss simulator to ensure that it will fit properly with the S4 and S6 truss segments. S5 is scheduled for launch in October 2003 on mission STS-118. It will be the tenth truss assembled in an 11-truss structure

KENNEDY SPACE CENTER, FLA. -- At Kennedy Space Center's Shuttle Landing Facility, workers watch as the nose of NASA's Super Guppy aircraft opens to reveal its cargo, a component for the International Space Station (ISS), the port-side P3 truss. The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1). The P3 truss will be taken to the Operations and Checkout Building.

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, workers oversee the removal of the P4 truss from the truck that transported it from Tulsa, Okla. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field on the International Space Station, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy aircraft arrives at Kennedy Space Center's Shuttle Landing Facility. The plane carries a component for the International Space Station (ISS), the port-side P3 truss. The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1). The P3 truss will be taken to the Operations and Checkout Building.

Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

KENNEDY SPACE CENTER, FLA. -- The newly arrived S5 truss segment for the International Space Station passes near the Vehicle Assembly Building on its trek to the Space Station Processing Facility. There it will be fit checked for a Photo-Voltaic Radiator Grapple Fixture. It will also undergo a fit check to a truss simulator to ensure that it will fit properly with the S4 and S6 truss segments. S5 is scheduled for launch in October 2003 on mission STS-118. It will be the tenth truss assembled in an 11-truss structure.

KENNEDY SPACE CENTER, FLA. -- The P4 truss, which arrived via truck from Tulsa, Okla., is backed into the Space Station Processing Facility. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. -- After its move across the Space Station Processing Facility, the International Space Station’s P4 truss rests in its workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. -- The P4 truss arrives via truck from Tulsa, Okla. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, workers oversee the removal of the P4 truss from the truck that transported it from Tulsa, Okla. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field on the International Space Station, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, workers get ready to lower the International Space Station’s P4 truss onto a workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. -- The P4 truss arrives via truck from Tulsa, Okla. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. - Workers inside the payload canister watch the S1 Integrated Truss Structure as it is lowered toward them. The canister will transport the truss to Atlantis. The first starboard truss segment, the S1 will be attached to the Central truss segment, the S0 Truss, on the International Space Station during mission STS-112. Atlantis is scheduled to launch no earlier than Oct. 2.

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, workers prepare to process the newly arrived S5 truss segment for the International Space Station. It will be fit checked for a Photo-Voltaic Radiator Grapple Fixture and also undergo a fit check to a truss simulator to ensure that it will fit properly with the S4 and S6 truss segments. S5 is scheduled for launch in October 2003 on mission STS-118. It will be the tenth truss assembled in an 11-truss structure

KENNEDY SPACE CENTER, FLA. -- The P4 truss, which arrived via truck from Tulsa, Okla., is backed into the Space Station Processing Facility. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. -- After its move across the Space Station Processing Facility, the International Space Station’s P4 truss rests in its workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

KENNEDY SPACE CENTER, FLA. -- Inside the Operations and Checkout Building, the S1 truss, a segment of the International Space Station, is lowered toward workstand number three. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the International Space Station is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001

KENNEDY SPACE CENTER, FLA. -- Inside the Operations and Checkout Building, the S1 truss, a segment of the International Space Station, is moved toward workstand number three. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the International Space Station is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001
KENNEDY SPACE CENTER, FLA. - Under the eyes of a Boeing worker (center), STS-113 Mission Specialist John Herrington (left) and Mission Specialist Michael Lopez-Alegria (right) learn more about the payload for their mission. Part of the payload on mission STS-113 is the first port truss segment, P1 Truss, to be attached to the central truss segment, S0, on the International Space Station. Once delivered, the P1 truss will remain stowed until flight 12A.1. Launch date for STS-113 is under review.

KENNEDY SPACE CENTER, FLA. -- During Crew Equipment Interface Test (CEIT), members of the STS-116 crew look over equipment they will be working with during their mission to the International Space Station. On the stand at left is Mission Specialist Robert Curbeam. The 19th assembly flight to the ISS, the mission will deliver the third port truss segment, the P5 Truss, to attach to second port truss segment, the P3/P4 Truss, to be assembled in an earlier mission. STS-116 is scheduled for launch in June 2003.

KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the S1 Integrated Truss Structure toward the payload canister, which will transport it to Atlantis. The first starboard truss segment, the S1 will be attached to the Central truss segment, the S0 Truss, on the International Space Station during mission STS-112. Atlantis is scheduled to launch no earlier than Oct. 2.

KENNEDY SPACE CENTER, FLA. -- During Crew Equipment Interface Test activities in the Space Station Processing Facility, STS-115 Mission Specialists Heidemarie Stefanyshyn-Piper and Joseph Tanner look at equipment. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-115 Mission Specialists Daniel Burbank (left) and Steven MacLean (right) check out equipment during Crew Equipment Interface Test activities. MacLean is with the Canadian Space Agency. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.

KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the S1 Integrated Truss Structure toward the payload canister below, which will transport it to Atlantis. The first starboard truss segment, the S1 will be attached to the Central truss segment, the S0 Truss, on the International Space Station during mission STS-112. Atlantis is scheduled to launch no earlier than Oct. 2.

KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-116 Mission Specialist Robert Curbeam works on equipment for the mission during a Crew Equipment Interface Test activity. Mission STS-116 is the 19th assembly flight to the International Space Station, delivering the third port truss segment, the P5 Truss, that will be attached to the second port truss segment, the P3/P4 Truss. The mission will also deliver the eighth expedition crew to the ISS and return Expedition 7. STS-116 is scheduled for launch July 24, 2003.

KENNEDY SPACE CENTER, FLA. -- During Crew Equipment Interface Test (CEIT), STS-116 Mission Specialist Christer Fugelsang, with the European Space Agency, Mission Specialist Robert Curbeam and Pilot William Oelefein look over equipment they will be working with during their mission to the International Space Station. The 19th assembly flight to the ISS, the mission will deliver the third port truss segment, the P5 Truss, to attach to second port truss segment, the P3/P4 Truss, to be assembled in an earlier mission. STS-116 is scheduled for launch in June 2003.

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, workers oversee the lowering of the newly arrived radiator assembly onto a workstand. The radiator is part of the payload on mission STS-113, which also includes the first port truss segment, P1 Truss, to be attached to the central truss segment, S0 Truss, on the International Space Station. Once delivered, the will remain stowed until flight 12A.1. STS-113 is scheduled to launch Oct. 6, 2002

KENNEDY SPACE CENTER, FLA. -- The payload canister is ready to be opened in the Payload Changeout Room at the pad. Inside is the S1 Integrated Truss Structure, primary payload on mission STS-112 aboard Space Shuttle Atlantis. The first starboard truss segment, the S1 will be attached to the Central truss segment, the S0 Truss, on the International Space Station during the mission. Atlantis is scheduled to launch no earlier than Oct. 2.

KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the S1 Integrated Truss Structure above over other equipment to get to the payload canister for transport to Atlantis. The first starboard truss segment, the S1 will be attached to the Central truss segment, the S0 Truss, on the International Space Station during mission STS-112. Atlantis is scheduled to launch no earlier than Oct. 2.

KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington looks over part of the payload for the mission during Crew Equipment Interface Test activities in the Space Station Processing Facility. The mission will be carrying the first port truss segment, P1 Truss, to be attached to the central truss segment, S0, on the International Space Station. Once delivered, the P1 truss will remain stowed until flight 12A.1. Launch date for STS-113 is under review.

KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Joseph Tanner (center) works a piece of equipment during Crew Equipment Interface Test activities in the Space Station Processing Facility. On the right is Mission Specialist Heidemarie Stefanyshyn-Piper. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.

KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Steven MacLean looks over part of the mission payload in the Space Station Processing Facility during Crew Equipment Interface Test activities. MacLean is with the Canadian Space Agency. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.

KENNEDY SPACE CENTER, FLA. -- An overhead crane lifts the S1 Integrated Truss Structure from its workstand. The S1 will be placed in the payload canister for transport it to Atlantis. The first starboard truss segment, the S1 will be attached to the Central truss segment, the S0 Truss, on the International Space Station during mission STS-112. Atlantis is scheduled to launch no earlier than Oct. 2.

KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialists Michael Lopez-Alegria (left) and John Herrington (center) look over part of the payload for the mission during Crew Equipment Interface Test activities in the Space Station Processing Facility. The mission will be carrying the first port truss segment, P1 Truss, to be attached to the central truss segment, S0, on the International Space Station. Once delivered, the P1 truss will remain stowed until flight 12A.1. Launch date for STS-113 is under review.

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, workers prepare to attach an overhead crane to the radiator assembly that just arrived. The radiator is part of the payload on mission STS-113, which also includes the first port truss segment, P1 Truss, to be attached to the central truss segment, S0 Truss, on the International Space Station. Once delivered, the will remain stowed until flight 12A.1. STS-113 is scheduled to launch Oct. 6, 2002

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, an overhead crane moves the newly arrived radiator assembly toward a workstand. The radiator is part of the payload on mission STS-113, which also includes the first port truss segment, P1 Truss, to be attached to the central truss segment, S0 Truss, on the International Space Station. Once delivered, the will remain stowed until flight 12A.1. STS-113 is scheduled to launch Oct. 6, 2002

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, workers help guide the newly arrived radiator assembly onto a workstand. The radiator is part of the payload on mission STS-113, which also includes the first port truss segment, P1 Truss, to be attached to the central truss segment, S0 Truss, on the International Space Station. Once delivered, the will remain stowed until flight 12A.1. STS-113 is scheduled to launch Oct. 6, 2002

KENNEDY SPACE CENTER, FLA. -- Members of the STS-115 crew look over the mission payload in Crew Equipment Interface Test activities in the Space Station Processing Facility. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.

KENNEDY SPACE CENTER, FLA. -- In the Payload Changeout Room at the pad, the payload is moved out of the payload canister for transfer to Space Shuttle Atlantis' payload bay for mission STS-112. The primary payload on the mission is the S1 Integrated Truss Structure. The first starboard truss segment, the S1 will be attached to the Central truss segment, the S0 Truss, on the International Space Station during the mission. Atlantis is scheduled to launch no earlier than Oct. 2.

KENNEDY SPACE CENTER, FLA. - Members of the STS-115 crew take part in Crew Equipment Interface Test activities in the Space Station Processing Facility. Checking out part of the payload is Mission Specialist Joseph Tanner. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.

KENNEDY SPACE CENTER, FLA. -- STS-115 Mission Specialist Daniel Burbank checks out equipment during Crew Equipment Interface Test activities in the Space Station Processing Facility. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.

KENNEDY SPACE CENTER, FLA. -- The open nose of the Super Guppy transport aircraft reveals its cargo, the S5 truss segment for the International Space Station, inside. After offloading, the S5 truss will be transferred to the Space Station Processing Facility where it will be fit chedked for a Photo-Voltaic Radiator Grapple Fixture. It will also undergo a fit check to a truss simulator to make sure S5 will fit together with the S4 and S6 truss segments. S5 is scheduled for launch in October 2003 on mission STS-118. It will be the 10th truss assembled as part of a total 11 trusses.

KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test, STS-112 Mission Specialist Piers Sellers looks at the engine on Atlantis, the designated orbiter for the mission. On the 15th assembly flight to the International Space Station, Atlantis and crew will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002

KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist David Wolf discusses flight equipment with two technicians during a Crew Equipment Interface Test at KSC. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002

KENNEDY SPACE CENTER, FLA. - STS-112 Pilot Pamela Melroy signals to someone off camera while behind her other crew members look over the S1 Integrated Truss Structure, part of the payload for the mission to the International Space Station. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. Launch of STS-112 is scheduled for Aug. 22, 2002

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the S5 truss segment for the International Space Station is prepared for ground transport after being offloaded from the Super Guppy transport aircraft on which it arrived. The S5 truss will be taken to the Space Station Processing Facility where it will be fit checked for a Photo-Voltaic Radiator Grapple Fixture. It will also undergo a fit check to a truss simulator to ensure that it will fit properly with the S4 and S6 truss segments. S5 is scheduled for launch in October 2003 on mission STS-118. It will be the tenth truss assembled in an 11-truss structure.